Tag Archives: SciCommunity

Optical fibre innovation via trans-disciplinary approach!

10 September 2018:

CNBP researchers have published a new  trans-disciplinary review that reports on the Centre’s development of advanced optical fibre probes for use in biomedical sensing and imaging. The paper examines CNBP innovation through convergence of multiple science disciplines to generate opportunities for the fibre probes to address key challenges in real-time in vivo diagnostics. The lead author on the paper is Dr Jiawen Li (pictured).

Journal: APL Photonics.

Publication title: Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines.

Authors: Jiawen Li, Heike Ebendorff-Heidepriem, Brant C. Gibson,  Andrew D. Greentree, Mark R. Hutchinson, Peipei Jia, Roman Kostecki, Guozhen Liu, Antony Orth, Martin Ploschner, Erik P. Schartner,   Stephen C. Warren-Smith, Kaixin Zhang, Georgios Tsiminis, and Ewa M. Goldys.

Abstract: The probing of physiological processes in living organisms is a grand challenge that requires bespoke analytical tools. Optical fiber probes offer a minimally invasive approach to report physiological signals from specific locations inside the body. This perspective article discusses a wide range of such fiber probes developed at the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics. Our fiber platforms use a range of sensing modalities, including embedded nanodiamonds for magnetometry, interferometric fiber cavities for refractive index sensing, and tailored metal coatings for surface plasmon resonance sensing. Other fiber probes exploit molecularly sensitive Raman scattering or fluorescence where optical fibers have been combined with chemical and immunosensors. Fiber imaging probes based on interferometry and computational imaging are also discussed as emerging in vivo diagnostic devices. We provide examples to illustrate how the convergence of multiple scientific disciplines generates opportunities for the fiber probes to address key challenges in real-time in vivo diagnostics. These future fiber probes will enable the asking and answering of scientific questions that were never possible before.

Understanding glycome changes in diabetic ovarian tissue

28 August 2018:

This paper describes the characterization of protein glycosylation in the ovary and measures the changes that occur with the induction of diabetes. The lead author on the paper is CNBP PhD student Abdulrahman M Shathili from Macquarie University (pictured).

Journal: Glycobiology.

Publication title: The effect of streptozotocin-induced hyperglycemia on N-and O-linked protein glycosylation in mouse ovary.

Authors: Abdulrahman M Shathili, Hannah M Brown, Arun V Everest-Dass, Tiffany C Y Tan, Lindsay M Parker, Jeremy G Thompson, Nicolle H Packer.

Abstract: Post-translational modification of proteins namely glycosylation influences cellular behavior, structural properties and interactions including during ovarian follicle development and atresia. However, little is known about protein glycosylation changes occurring in diabetes mellitus in ovarian tissues despite the well-known influence of diabetes on the outcome of successful embryo implantation. In our study, the use of PGC chromatography–ESI mass spectrometry in negative ion mode enabled the identification of 138 N-glycans and 6 O-glycans on the proteins of Streptozotocin-induced (STZ) diabetic mouse ovarian tissues (n = 3). Diabetic mouse ovaries exhibited a relative decrease in sialylation, fucosylation and, to a lesser extent, branched N-linked glycan structures, as well as an increase in oligomannose structures on their proteins, compared with nondiabetic mouse ovaries. Changes in N-glycans occurred in the diabetic liver tissue but were more evident in diabetic ovarian tissue of the same mouse, suggesting an organ-specific effect of diabetes mellitus on protein glycosylation. Although at a very low amount, O-GalNAc glycans of mice ovaries were present as core type 1 and core type 2 glycans; with a relative increase in the NeuGc:NeuAc ratio as the most significant difference between control and diabetic ovarian tissues. STZ-treated mice also showed a trend towards an increase in TNF-α and IL1-B inflammatory cytokines, which have previously been shown to influence protein glycosylation.

A photoresponsive LPD system developed

19 July 2018:

CNBP researchers have published a paper reporting on  the development of a novel photoresponsive liposome-polycation-DNA (LPD) platform. Lead author on the paper was Wenjie Chen (pictured).

Journal: Journal of Materials Chemistry B.

Publication title: Photoresponsive endosomal escape enhances gene delivery using liposome-polycation-DNA (LPD) nanovector.

Authors: Wenjie Chen, Wei Deng, Xin Xu, Xiang Zhao, Jenny Nhu Vo, Ayad G. Anwer, Thomas C. Williams, Haixin Cui, Ewa M. Goldys.

Abstract: Lipid-based nanocarriers with stimuli responsiveness have been utilized as controlled release systems for gene/drug delivery applications. In our work, by taking advantage of high complexation capbility of polycations and the light triggered property, we designed a novel photoresponsive liposome-polycation-DNA (LPD) platform. This LPD carrier incorporates verteporfin (VP) in lipid bilayers and the complex of polyethylenimine (PEI)/plasmid DNA (pDNA) encoding EGFP (polyplex) in the central cavities of liposomes. The liposomes were formulated with cationic lipids, PEGylated neutral lipids and cholesterol molecules, which improve their stability and cellular uptake in the serum-containing media. We evaluated the nanocomplex stability by monitoring size changes over six days, and the celluar uptake of nanocomplex by imaging the intracellular route. We also demonstrated light triggered the cytoplasmic release of pDNA upon irradiation with a 690 nm LED light source. Furthermore this light triggered mechanism has been studied at subcellular level. The activated release is driven by the generation of reactive oxygen species (ROS) from VP after light illumination. These ROS oxidize and destabilize the liposomal and endolysosomal membranes, leading to the release of pDNA into the cytosol and subsequent gene transfer activities. Light-triggered endolysosomal escape of pDNA at different time points was confirmed by quantitative analysis of colocalization between pDNA and endolysosomes. The increased expression of the reporter EGFP in human colorectal cancer cells was also quantified after light illumination at various time points. The efficiency of this photo-induced gene transfection was demonstrated to be more than double compared to non-irradiated controls. Additionally, we observed reduced cytotoxicity of the LPDs compared with the polyplexes alone. This study have thus shown that light-triggered and biocompatible LPDs enable improved control of efficient gene delivery which will be beneficial for future gene therapies.

Research translation is focus of CNBP workshop

11 July 2018:

The take-home message from CNBP’s two day ‘Research Translation’ workshop, held in Adelaide, the 5th and 6th of July, was that high quality science can change people’s lives and that the research that CNBP undertakes is truly transformative with huge translation potential.

Over 75 CNBP researchers, students, partners and invited guests attended the workshop which was based at the University of Adelaide on Day One and which then moved to the South Australian Health and Medical Research Institution (SAHMRI) on Day Two.

During the workshop CNBP researchers worked in small groups with senior clinicians to learn about clinical problems and discuss how their research could be translated. They also heard from several leading clinicians about what it’s like to be part of a clinical translation project.

Additional talks described clinical translation from ‘the other side’ – with technical researchers explaining the steps involved in translating a new technology, and drawing on their real-world experiences and outlining key learnings that had been made. Dr Anne Collins then brought insight from a commercial perspective, providing a detailed case study of one of Trajan Scientific and Medical’s most recent market products.

A number of CNBP researchers, from all nodes across the Centre, then presented brief updates on clinically-related projects that are currently underway. This culminated in a master-class led and coordinated by CNBP CI Nicki Packer on seeing nanoparticles at super resolution in cells.

CNBP Director Prof Mark Hutchinson wrapped-up workshop proceedings noting that he had been highly impressed with the science and information presented and encouraged the CNBP team to keep ‘commercialisation impact’ top of mind as this was one of the Centre’s core values.

Prof Rob McLaughlin, Founder of Miniprobes and Senior CNBP Investigator, who helped host the event noted, “We’d like express our gratitude to all of the clinicians who made the workshop such a success: Jillian Clark, Rob Fitridge, Adam Wells, Phan Nguyen, Nam Nguyen, Tarik Sammour, Hidde Kroon, Sam Parvar and Nagendra Dudi-Venkata. Our thanks also to Anne Collins from Trajan Scientific and Medical, and Andrew Abell.”

Informal feedback from attendees at the event was that they had experienced a highly informative and rewarding two days of translational workshop activity.

Note – a brief visual video of the event has been produced by Dr Johan Verjans here.

Below – Dr Johan Verjans CNBP AI at SAHMRI discusses the need to work closely with clinicians to successfully translate research into the clinical environment.

New CNBP partnership announced

13 June 2018:

The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) is pleased to announce that the Changchun Institute of Applied Chemistry (CIAC) is now a Partner Organisation of the CNBP with Dr Xiaohui Wang (pictured) leading the relationship from the CIAC side as a formal CNBP Partner Investigator.

Collaboration activity to take place between CNBP and CIAC will be focused in the areas of innate immune targeted biosensors and novel pharmacology. More specifically, CIAC expertise will feed into CNBP’s advanced research program exploring the impact of innate immune signalling in pain processing.

In a similar manner, CNBP will bring to CIAC and Dr Xiaohui Wang’s team a unique set of pre-clinical behavioural models and application areas that will advance the CIAC research program more broadly across the synthetic chemistry space.

Prof Mark Hutchinson, CNBP Director, noted that Dr Xiaohui Wang already possessed strong linkages with CNBP following Dr Wang’s visits to several CNBP nodes, and the decadal collaboration between the two researchers stemming from their time working together at the Center for Neuroscience at the University of Colorado, Boulder USA.

“I look forward to our future co-operative activity,” says Prof Mark Hutchinson. “CNBP and CIAC are an excellent strategic partnership fit in the novel innate immune targeted chemistry and pain-signalling space and I’m extremely excited to see where our joint research activity takes us.”

As a part of the partnership, CIAC will fund a full-time PhD student working on CNBP-CIAC related projects as well as provide additional research funding to support project activity and materials.

Below – Dr Xiaohui Wang.

Fellowship supports ongoing study into chronic pain

26 April 2018:

The Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Council Centre of Excellence is pleased to announce that Logan Jenkins, a researcher at Vanderbilt University, USA, is the successful recipient of the CNBP-American Australian Association (AAA) Fellowship for 2018.

The Fellowship, coordinated by the AAA and funded by the CNBP, provides US$30,000 to support an American graduate student, PhD or early career Postdoctoral Fellow who wishes to conduct collaborative research at a CNBP research node in Australia.

In this instance, it will allow Logan Jenkins, who specialises in Biophotonics, to take forward research that will explore how light can be used to control neuronal activity, as well as to examine how such techniques potentially impact the body’s neuroimmune system.

This area of study will directly align with CNBP’s activity in the chronic pain space says Mark Hutchinson, CNBP Director and Professor at the University of Adelaide.

“Within the CNBP we examine the working neuroimmune interface at a cellular level and in particular, how the brain’s immune-like cells are linked to chronic pain, a condition that affects millions of people world-wide,” Professor Hutchinson says.

“We will work closely with Logan to see how his light-based neuronal control mechanisms, and neuroimmune related study, links to our own advanced research in this area.”

Jenkins is looking forward to meeting the CNBP research team in Australia.

“This Fellowship will give me the opportunity to work closely with a prestigious Centre of Excellence and I look forward to conducting some excellent and impactful research. I also hope to build scientific friendships that will lead to ongoing collaborations and discovery,” he says.

Prof Mark Hutchinson welcomed the Fellowship appointment.

“The CNBP seeks to conduct international cutting-edge research in Biophotonics. In order to do this we need to have the best people in the world collaborating with us. This includes rising stars like Logan who comes to us from the Vanderbilt Biophotonics Center, an outstanding organisation which leads the world in ‘neuronal control by light’ investigation.”

“Logan will be based primarily at the University of Adelaide during this Fellowship and will also spend time at CNBP’s other research nodes as he explores his research program in the Centre,” says Professor Hutchinson.

Further information on the United States to Australia Scholarships can be found online at the American Australian Association website. The AAA seeks to build closer USA to Australia ties.

The research is also being supported by the Air Force Office of Scientific Research (AFOSR) and enabled through access to the Australian National Fabrication Facility (ANFF).

Below – Logan Jenkins.

Advanced sensor to unlock the secrets of the brain

17 April 2018:

CNBP researchers have announced the development of a state-of-the-art sensor that can for the first time detect signalling molecules, called cytokines, which operate in the living brain. Cytokines in the brain are secreted by glia cells that make up nearly 90% of all brain cells. Cytokines play a central role in controlling mood and cognition and may also contribute to a number of mental health disorders.

“What we’ve developed is the first sensor capable of monitoring the release of these cytokines in the brain,” says lead researcher Kaixin Zhang, a PhD candidate at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at Macquarie University.

“Critically, there is mounting evidence that these glial-released cytokines play a central role in regulating a range of brain functions. In particular they are responsible for affecting mood, cognition and behaviour.”

“Our innovative new sensor has the potential to increase our knowledge not only of how the brain works, but may be able to shed light on conditions such as depression, stress, anxiety and even schizophrenia,” he says.

The sensor consists of a modified optical fibre which has had its surface treated with a capture protein. The protein reacts to the presence of cytokine molecules and is capable of monitoring local cytokine release in discrete and targeted parts of the brain.

Professor Ewa Goldys, CNBP Deputy Director, and a senior researcher on the project, notes that brain functionality is an extremely complex area where scientific knowledge is still limited.

“Our research in understanding cytokine secretion, neural circuits and how these two work together is essential to improving our understanding of the brain, in health and disease. Our sensor has opened a new window to the brain, but we still have far more to discover,” she says.

“The key benefit of our new sensor is that it enables the detection of cytokine release precisely as it happens, in living, naturally behaving animals, which is the key step on this discovery journey. To date, suitable tools have not been available to do this as the living brain is an incredibly difficult part of the body to access, and these cytokines are very difficult to measure.”

Published in the leading scientific journal ‘Brain, Behavior, and Immunity’, the cytokine sensor research was undertaken by an international team of scientists at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, University of Colorado Boulder, Central China Normal University and The University of Adelaide.

“This is a really fantastic example of the work which we do at the CNBP, which is all about creating state-of-the-art sensing tools that can measure the inner workings of the living organism,” says Prof Goldys.

“It may be early days in this research but it will be fascinating to see where this cytokine detection takes us. It may prove to be a pivotal point in the understanding, and eventual diagnostic and clinical treatment, of a whole range of health conditions.”

PAPER:
A novel platform for in vivo detection of cytokine release within discrete brain regions. https://www.sciencedirect.com/science/article/pii/S0889159118301302

AUTHORS: Kaixin Zhang, Michael V. Baratta, Guozhen Liu, Matthew G. Frank, Nathan R. Leslie, Linda R. Watkins, Steven F. Maier, Mark R. Hutchinson, Ewa M. Goldys.

Below – CNBP PhD Candidate – Kaixin Zhang.

Successful BioNetwork 2018 symposium

13 April 2018:

The BioNetwork 2018 symposium titled ‘Killing it in Science’ was held Friday, 13th April at Macquarie University with significant CNBP involvement at the event.

The aim of the symposium was to foster interactions across the Macquarie University biosciences researcher community encompassing the Science & Engineering and Medicine & Health Sciences Faculties.

A unique career-building panel session was held in the morning of the symposium and a scientific session was held in the afternoon to create a platform for interdisciplinary research collaborations to commence novel or strengthen existing projects.

CNBP Associate Investigators Dr Alfonso Garcia-Bennett (Macquarie University) and Dr Varun Sreenivasan (University of New South Wales) were both invited speakers at the event speaking to their careers in academia, providing tips for advancement as well as outlining challenges that they had faced.

For the science session, CNBP students Mina Ghanimi Fard and Sameera Iqbal (pictured top left) jointly presented on the brain and the targeting and measuring of central nervous system sugar receptors. Other CNBP students also took part with Piotr Wargocki, Kashif Islam, Minakshi Das and Rachit Bansal presenting their CNBP releated science during the morning and lunch-time poster sessions.

CNBP AI’s Annemarie Nadort and Nima Sayyadi were both key members of the symposium organising committee.

“We had a fantastic engaged crowd of over 150 attendees and a wide range of presenters covering careers in academia, research-industry collaboration, innovative bio-research activity and much much more,” said Annemarie Nadort.

“There was so much positive feedback from participants on the day and we’ve kick-started a great many conversations and discussions which will hopefully build new research relationships and lead to even more innovative science taking place.”

Below – Organiser Annemarie Nadort observing the successful symposium panel discussion from the wings.

Detecting hydrogen peroxide

19 March 2018:

A nanosensor that can detect hydrogen peroxide has been developed by CNBP/IPAS researchers by combining fluorescent nanodiamonds with organic fluorescent probes.

Importantly, cellular imbalance of hydrogen peroxide has been connected to aging and various severe diseases, including cancer, cardiovascular disorders, and Alzheimer’s.

The work is featured in the latest edition of MRS Bulletin with Patrick Capon from the University of Adelaide, co-author of the research study interviewed for the article (available here).

CINSW Fellowship awarded

16 March 2018:

It has been formally announced that Dr Andrew Care, former CNBP Research Fellow and now Centre Associate Investigator, has been awarded a 2018 Early Career Fellowship from the Cancer Institute New South Wales (CINSW) to fund the research project, ‘Biological nanoparticles for the targeted delivery and light-triggered release of drugs’.

This project aims to develop novel protein nanocages for the targeted co-delivery and controlled release of therapeutics in the multimodal treatment of cancer.

In addition, PhD Candidate Ms Dennis Diaz, who is part of the team working on this exciting project, was recently awarded a Research Scholarship Award from the translational cancer research centre, Sydney Vital.

Dennis is working under the supervision of Dr Andrew Care and A/Prof. Anwar Sunna (also a CNBP Associate Investigator).

Further information on the CINSW and its recent grants announcement is available here.