Tag Archives: SciCommunity

CNBP welcomes UNSW engineering to the fold

10 September 2019:

CNBP has officially welcomed UNSW, one of the world’s leaders at translational engineering research, as its newest node.

In addition to the official open by UNSW Engineering Dean Professor Mark Hoffman, CNPB Director Professor Mark Hutchinson took the opportunity to lay out the CNBP mission and its accomplishments at an industry showcase. Continue reading

How Bollywood boost Australia’s brainpower

3 September 2019:

In the 10 years since graduating with a degree in biotechnology from university in her home state of Odisha in India, Minakshi Das has covered a lot of ground – both physically and in her studies.

First she did her masters in Biomedical Engineering at Gachon University in South Korea followed by a year’s work as a research fellow at a biotech company. Continue reading

Prestigious research award for emerging fertility leader

26 August 2019: 

Dr Kylie Dunning is motivated by creating a world where fewer couples struggle with infertility, an often invisible and stigmatised health challenge facing more than 15% of Australian couples. With lived experience herself of the challenges of starting a family, Dr Dunning is paving the way for couples to experience better, and more effective fertility care, through the creation of exciting new technologies. Continue reading

Science on show – what’s on in National Science Week

7 August 2019:

The CNBP and its researchers are taking part in a wide range of activities for National Science Week.

This Thursday 8 August researcher Dr Wei Deng from UNSW Sydney will explain how nanotechnogy is changing how we treat cancer, as part of Inspiring Australia’s Talking Science series.

It will be held at the Max Webber Library, in Blacktown, Sydney. More details here.

On Sunday, 11 August, Adelaide University’s Lyndsey Collins-Praino will host Kids Navigate Neuroscience, an event at which children aged 4-10 can explore how the brain works in a fun and hands-on way by participating in a series of interactive neuroscience exhibits.

You can find out more about the event here. Bookings are essential and can be made through Eventbrite.

On Tuesday 13 August explore medical brain research by joining Dr Lindsay Parker, a researcher at Macquarie University, as she discusses how she is trying to create better medicines for Alzheimer’s, chronic pain and brain cancer, by only targeting the unhealthy cells in the brain.

This event is part of Inspiring Australia’s Talking Science series as part of National Science Week. Bookings available now. Contact details:
Castle Hill Library
The Hills Shire Library Service
Email: libraryseminars@thehills.nsw.gov.au
Phone: 02 9761 4510
https://www.scienceweek.net.au/exploring-medical-brain-research/

There is a fun evening next Friday, 16 August, at the Adelaide Medical School, University of Adelaide, where you can explore the neuroscience of sex, drugs and salsa dancing.

A series of interactive exhibits will address questions such as, what role does the brain play in sexual attraction? Can you salsa dance your way to a healthy brain? How does the brain perceive different flavours when drinking wine, and how can pairing wine with different foods alter this perception?

More details here and bookings are through Eventbrite.

Also next Friday, 16 August, the whole family is invited to see some amazing short videos on a massive screen in a free National Science Week Event hosted by STEMSEL Foundation Braggs Lecture Theatre, University of Adelaide AI Light Science Spectacular.

You will find out how the eye works, how NASA finds planets in other solar systems and how detected the edge of the Universe.

You will also explore light, from nanoscale biophotonics with CNBP research fellow Dr Roman Kostecki to exploring the Universe with Dr Jerry Madakbas, a photonics physicist who builds night vision sensors for NASA.

You can book through Eventbrite.

Also on Friday night:

What role does the brain play in sexual attraction? Can you salsa dance your way to a healthy brain? How does the brain perceive different flavours when drinking wine, and how can pairing wine with different foods alter this perception?

These days, you can’t seem to walk through the aisle of a grocery store without being bombarded by newspaper and magazine headlines touting the latest and greatest breakthrough in neuroscience research. But how can you tell fact from fiction?

Join us for this Big Science Adelaide event, held at the Adelaide Health and Medical Sciences (AHMS) building at the University of Adelaide, where we’ll explore the answers to these questions and many more!

More details at https://www.scienceweek.net.au/neuroscience-at-night/ 
Finally, CNBP researchers will be taking part in Science in the Swamp, a fun, free family festival of science displays, shows and activities on Sunday 18 August in Centennial Park, Sydney.

Join scientists as they show what amazing superpowers you find in nature – super sight, super hearing, super strength and camouflage are only some of the capabilities on show.

Be sure to put on your cape and dress up as your favourite superhero for this great event. You can find out more details here.

5 ways nanoscale biophotonics could help your family

30 July 2019:

Biophotonics is a technique with so many applications it’s hard to know where to start.
While you probably have never heard of most of them, the technology is transforming the way we study human health.

Improving pregnancy success rates

A lot of what we know about fertilisation and embryo development has come from in vitro experiments – those carried out in a test tube. How much better if we could observe these processes inside real, live female bodies.

Well new technologies, using nanoscale biophotonics, let us do precisely that.

High powered sensors, harnessing the power of light, can zoom in on the chemistry of pregnancy to deepen our understanding of all the ingredients needed to grow a healthy baby for nine months.

Safer brain surgery

The tiny imaging probe, encased within a brain biopsy needle, lets surgeons “see” at-risk blood vessels as they insert the needle. That helps stop potentially fatal bleeds.

The smart needle, being developed by CNBP researchers at the University of Adelaide, contains a tiny fibre-optic camera, the size of a human hair, shining infrared light to see the vessels before the needle can damage them.

The needle is connected to computer software that can alert the surgeon in real-time.
It has already gone through a pilot trial with 12 patients at Sir Charles Gairdner Hospital in Western Australia and will soon be ready for formal clinical trials.

Early diagnosis of common health problems

Our cells often signal ill health long before symptoms appear. And as we all know, early diagnosis can often mean the difference between life and death.

That inspired CNBP researchers to look for a general marker for ill health and then to work on a means of detecting it.

They settled on the cytokines, a type of protein secreted by cells in the immune system that can signal a whole range of conditions including arthritis, tissue trauma, depression or even cancer.

The problem up to now has been that cytokines are extremely hard to measure and quantify – there is not many of them at any time, they are extremely small and exist in an environment of much background noise and interference.

So CNBP researchers developed nanotools to monitor cytokines in living humans. They engineered the surfaces of nanomaterials such as gold nanoparticles, graphene oxides and magnetic nanoparticles to sense the presence of cytokines, providing an ultra-powerful tool for early detection.

Removing more cancer cells the first time

One of the biggest problems for cancer surgeons is making sure they remove all the cancer cells while leaving as much healthy tissue intact as possible. But it can be hard to tell the two apart – in 15-20% of cases the patient requires follow-up surgery to remove tumour tissue that was missed the first time. It is particularly difficult to differentiate with breast cancer.

Now CNBP researchers, in collaboration with clinicians at the Royal Adelaide Hospital, have developed a sensor which can potentially help surgeons to tell the difference between healthy and cancerous tissue in real time, which could significantly increase the surgery success rate for many cancers.

The probe works by measuring the pH of the surface of the tissue, an indicator of whether the tissue is healthy or tumorous. The tip of an optical fibre is coated with a pH sensitive indicator, and the signal read out uses a low-cost light emitting diode and portable spectrometer.

Less painful, more accurate testing for prostate cancer

It has long been a goal to replace invasive needle biopsies to test for prostate cancer with a simple urine test. Not only would that be great for the patients, it would also be cheaper and faster. But current urine diagnostic tools are just not sensitive enough.

For a test to be useful for early diagnosis and treatment, it would need to detect just 10 cancer cells in a large volume of urine. Biophotonics could solve this problem.

CNBP is working with Minomic International and Macquarie University to develop a new method of fluorescent staining and imaging prostate cancer cells so they become highly visible, glowing when viewed under a special microscope.

The capacity to quantify single prostate cancer cells has the potential to revolutionise the diagnostics industry.

Shedding light on nanoparticles for better bio-imaging

25 July 2019:

CNBP researcher Dr Nafisa Zohora has been awarded her PhD in applied physics by Melbourne’s RMIT University. Her research project looked at materials that could be used as an alternative to available fluorophores – the fluorescent chemical compounds used in a variety of biological research projects.

The discoveries of the project solves a significant problem that was stopping scientists obtaining good images of biological samples.

Fluorophores are used to stain specific cells, for example, which are then observed and analysed by a fluorescence microscope. They are used as biomarkers to identify a range of bioactive molecules such as antibodies or proteins.

But for the fluorophores to re-emit light, they must first absorb it in a process known as “excitation” – usually brought about with a laser.

The problem is, though, that some compounds just do not absorb enough with low power excitation to produce enough fluorescence to be seen under the microscope. But higher power, from greater exposure to a laser for example, can also generate so much heat that the sample is destroyed.

The fluorophores are also inclined to lose their ability to emit within a few seconds with repeated exposure to the laser, not giving enough time to take a good image.

Nafisa set out to find a solution to both these issues. She began by studying the commercially available nanoparticle fluorophores such as cuprous oxide (Cu2O), titanium dioxide (TiO2) and zinc oxide (ZnO) but couldn’t find the properties she was looking for.

She then decided to synthesise her own nanoparticles.

After two years of hard work, she had successfully developed a methodology to synthesis Cu2O nanocubes that become very bright with a very low power excitation.

What’s more they are photostable for several hours under repeated exposure to a laser – so both problems solved!

In a follow-up collaboration with the University of Adelaide, Nafisa tested the nanoparticles for their toxicity to cells, giving them a clean bill.

Her work uncovering the exceptional properties of the synthesised Cu2O nanoparticles opens up new possible applications in detecting antigens and other long-term bio-imaging applications.

Nafisa’s supervisors were Professor Brant Gibson (Physics, RMIT University), Dr Ahmad Kandjani (Chemistry, RMIT University) and Professor Mark Hutchinson (The University of Adelaide). She completed her PhD on 1 July 2019, and her graduation ceremony will be in December.

CNBP research wins Young Scientist Award

18 July 2019:

CNBP research fellow Dr Lindsay Parker, of Macquarie University, has won an award for the best research paper from an investigator under 40, at an international conference in Rome.

Lindsay’s work is aimed at better understanding molecules ex-pressed in the brain during pain, brain diseases and brain cancer. This could lead to improved precision drugs that specifically target only the unhealthy cells in the brain.

She won a “Young Scientist Award” at the 41st PIERS (Photonics & Electromagnetics Research Symposium) held at the University of Rome in June.

Her paper, “Utilising Glycobiology for Fluorescent Nanodiamond Uptake and Imaging in the Central Nervous System” was in the category “Remote Sensing, Inverse Problems, Imaging, Radar & Sensing”.

The paper, in collaboration with RMIT University and the University of Colorado Boulder, investigated the ability of lectin-coated fluorescent nanodiamonds to recognise specific central nervous system cell types.

The prize included cash, and an invitation to the Symposium Banquet held at Palazzo Brancaccio. Lindsay also received travel awards from MQ University Primary Carer Support for Conference Attendance ($2000) and MQ Research Centre for Diamond Science and Technology ($1000) which meant her partner and baby William were also able to be in Rome with her as she worked.

While she was in Europe, Lindsay took the opportunity to give invited talks at the Czech Academy of Sciences in Prague and at the University of Groningen in Netherlands while visiting two other labs working in similar research areas to her synthetic nanochemistry expert Dr Petr Cigler and nanobiotechnology expert A/Prof Romana Schirhagl.

What is Nanoscale Biophotonics?

15 July 2019:

Researchers at the ARC Centre of Excellence for Nanoscale BioPhotonics have an early hurdle to jump when trying to explain their research to friends, family and the general public.

What on earth is nanoscale biophotonics?

While nothing about the field could exactly be called “simple”, it does become easier to understand when we realise that light can be put to some unusual uses.

And in biophotonics, that is as a tool to measure and detect all manner of things, from the genes that give away the presence of a pathogen, to chemicals released as part of our bodies reactions to the environment, and the fatty deposits that could mean you are at risk of a heart attack.

Dr Georgina Sylva, a recent winner of a A$20,000 #STEMstart grant, simplifies matters by breaking the definition of “nanoscale biophotonics” down for us.

“Nanoscale means things that are on a really, really tiny scale. Things that are a nanometre in size”.

At that scale (and a nanometre is equal to one billionth of a metre) it is way beyond the limitations of an ordinary microscope to see – and that’s where light comes in.

“Biophotonics refers to studying and understanding biology using light,” says Georgina.

“Photonics is how we play with light and how we use light. We are able to use the properties of light – the way that it can act as a particle or a wave to see very small things – to detect, to sense, to image, to measure things.

“Nanoscale biophotonics allows us to get a really good close-up image of what’s happening in a biological environment. The whole point of that is to understand how we can solve biological problems.”

Until nanoscale biophotonics, we have been in the dark about much of the activity inside human cells because we didn’t have the right technology to see them. But by using light we can measure almost anything – the chemicals released at the precise moment a human egg is fertilised, for example, or the Ph of a baby’s blood during birth to detect the risk of oxygen deprivation.

Just as astronomy’s Hubble Telescope has allowed us to suddenly view exoplanets and distant galaxies, nanoscale biophotonics has revealed our “inner space”, a new world for scientists to explore.

So, what are the applications of nanoscale biophotonics, and how might this field influence health and medicine? Read our next blog post How nanoscale biophotonics is already making our lives better.