Tag Archives: RMIT

Diamonds improve orthopaedic implants

17 July 2019:

3D printing of titanium has made patient-specific orthopaedic implants possible, promising to dramatically improve many people’s quality of life.

But, despite the huge potential, there are still significant problems to overcome, particularly in how the implants integrate with human tissue and bone.

Associate Professor Kate Fox from RMIT University in Melbourne, an Associate Investigator with the CNBP, led the team which, in a previous study, showed that a thin film coating of diamond could provide a better surface for cells to interact.

A new paper, Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits Staphylococcus aureus Colonization expands on that work.

It describes how applying a nanodiamond (ND) coating on to the 3D printed titanium increased the cell density of both skin bone cells after three days of growth compared to the uncoated 3D printed titanium.

The study also showed an 88% reduction of Staphylococcus aureus – or Golden Staph – adherence to ND-coated substrates compared to those without.

This study, whose lead author is Aaquil Rifai, from RMIT, paves a way to create antifouling structures for biomedical implants.

You can read the paper here.

Journal: ACS Applied Materials & Interfaces

Publication Title:  Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits Staphylococcus aureus Colonization

Authors: Aaqil Rifai*, Nhiem Tran, Philipp Reineck, Aaron Elbourne, Edwin Mayes, Avik Sarker, Chaitali Dekiwadia, Elena P. Ivanova, Russell J. Crawford, Takeshi Ohshima, Brant C. Gibsonm, Andrew D. Greentree, Elena Pirogova, and Kate Fox*

Abstract:  Additively manufactured selective laser melted titanium (SLM-Ti) opens the possibility of tailored medical implants for patients. Despite orthopedic implant advancements, significant problems remain with regard to suboptimal osseointegration at the interface between the implant and the surrounding tissue. Here, we show that applying a nanodiamond (ND) coating onto SLM-Ti scaffolds provides an improved surface for mammalian cell growth while inhibiting colonization of Staphylococcus aureus bacteria. Owing to the simplicity of our methodology, the approach is suitable for coating SLM-Ti geometries. The ND coating achieved 32 and 29% increases in cell density of human dermal fibroblasts and osteoblasts, respectively, after 3 days of incubation compared with the uncoated SLM-Ti substratum. This increase in cell density complements an 88% reduction in S. aureus detected on the ND-coated SLM-Ti substrata. This study paves a way to create facile antifouling SLM-Ti structures for biomedical implants.

Key Words: nanodiamond, antifouling, 3D printing, biomaterial, implants

CNBP hosts Olympus Australia

CNBP RMIT node meet with Olympus18 March 2015:

The CNBP continued to build on its close industry link with Olympus Australia, recently hosting James Bowe (Director of Olympus Australia), and several of his colleagues (Eisuke Arinobe and Kim Everuss) at the Centre’s RMIT research node in Melbourne.

Invited as guest speaker for the RMIT School of Applied Sciences 2015 Awards Ceremony, James Bowe took the time to meet with CNBP RMIT team members prior to the event and was given a tour of the new CNBP office and laboratory space which is currently under construction.

The visit demonstrated the closeness between the two organisations, with both keen to explore and develop potential collaboration opportunities.

The Awards Ceremony also proved to be a successful evening for the Centre, with CNBP student Ashleigh Heffernan recognised twice for his achievements. He accepted the Nanotechnology Award for Physics as well as the Walter Boas Memorial Prize which recognises creativity in third year physics study.