Tag Archives: Mark Hutchinson

CNBP welcomes UNSW engineering to the fold

10 September 2019:

CNBP has officially welcomed UNSW, one of the world’s leaders at translational engineering research, as its newest node.

In addition to the official open by UNSW Engineering Dean Professor Mark Hoffman, CNPB Director Professor Mark Hutchinson took the opportunity to lay out the CNBP mission and its accomplishments at an industry showcase. Continue reading

Through the looking glass

Mark Hutchinson8 July 2019:

The paper, Stereochemistry and innate immune recognition, opens the door to potential future treatments for sepsis, chronic pain and other conditions that cause inflammation.

The paper’s origins can be traced back nearly 15 years to when CNBP Director Mark Hutchinson began work on a project as a post-doc in the US with Prof Linda Watkins’ team. The goal was to identify the molecular drivers and detection systems involved in causing chronic pain. It began a long journey, in the course of which Mark helped identify one of the detection systems – the Toll Like Receptor 4, or TLR4.

This discovery in turn uncovered a range of other detection and drug action properties of the TLR4 system, including the novel activity of the mirror image structures of a range of chemicals which had previously been thought to lack biological activity.

One of these new discoveries is highlighted in this paper.

For the first time, the mirror image of a well-used receptor blocker, norbinaltorphimine, has been found to be able to block the interaction of TLR4 with MD2, a protein that plays an important part in the body’s immune response.

You can read the paper here.

Journal: FASEB – the Federation of American Societies for Experimental Biology

Publication Title:  Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling

Authors:  Xiaozheng Zhang, Yinghua Peng, Peter M. Grace, Matthew D. Metcalf, Andrew J. Kwilasz, Yibo Wang, Tianshu Zhang, Siru Wu, Brandon R. Selfridge, Philip S. Portoghese, Kenner C. Rice, Linda R. Watkins, Mark R. Hutchinson, and Xiaohui Wang

Abstract: Deregulation of innate immune TLR4 signaling contributes to various diseases including neuropathic pain and drug addiction. Naltrexone is one of the rare TLR4 antagonists with good blood-brain barrier permeability and showing no stereoselectivity for TLR4. By linking 2 naltrexone units through a rigid pyrrole spacer, the bivalent ligand norbinaltorphimine was formed. Interestingly, (+)-norbinaltorphimine ((+)-1) showed ∼25 times better TLR4 antagonist activity than naltrexone in microglia BV-2 cell line, whereas (−)-norbinaltorphimine ((−)-1) lost TLR4 activity. The enantioselectivity of norbinaltorphimine was further confirmed in primary microglia, astrocytes, and macrophages. The activities of meso isomer of norbinaltorphimine and the molecular dynamic simulation results demonstrate that the stereochemistry of (+)-1 is derived from the (+)-naltrexone pharmacophore. Moreover, (+)-1 significantly increased and prolonged morphine analgesia in vivo. The efficacy of (+)-1 is long lasting. This is the first report showing enantioselective modulation of the innate immune TLR signaling.

Key Words: norbinaltorphimine; enantioselective modulation; TLR4; MD-2; morphine analgesia

Research grant to tackle Parkinson’s Disease

22 February 2019:

CNBP Associate Investigators Dr Lyndsey Collins-Praino (University of Adelaide) and Dr Andrew Care (Macquarie University) together with CNBP Director Prof. Mark Hutchinson have been awarded a highly competitive Research Grant by the NeuroSurgical Research Foundation. The funds will help the team to work on pioneering a novel nanotechnology that will look to prevent the spread of Parkinson’s Disease throughout the human brain.

Super-resolution volumetric imaging

11 December 2018:

The Australian Research Council (ARC) has announced funding for a super-resolution imaging facility that will be the first of its kind in Australia.

The facility brings together a consortium of multidisciplinary researchers from leading Australian Universities, Institutes and Research Centres (including CNBP) to develop new capacities for materials science, photonics devices, engineering, and neuroscience, microbial and cardiovascular research.

At its core the A$3.0m ARC LIEF project will enable scientists to study the inner workings of cells in their native environment. This represents a step change from currently imaging isolated 2D cells cultured in a petri dish to future research that will reveal subcellular structures and cell-to-cell communications in 3D tissue in real time.

The National Volumetric Imaging Platform, as it is known, will be installed, maintained and operated by the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) and the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at RMIT University in Melbourne. This project is scheduled to be completed in late 2019.

UTS Professor Dayong Jin, Lead Chief Investigator of the project, said that the facility will give scientists a “new way to decode the complexities of life science machinery.”

“High-resolution imaging of the large volume of single cells and functional navigation of their interactions will allow researchers to drop into a ‘street view’ and observe the details of intercellular ‘live traffic’,” he said.

Prof Brant Gibson, Co-Deputy Director and RMIT node director of CNBP said, “I am very excited to lead the RMIT University node of the National Volumetric Imaging Facility and to work in collaboration with Jin Dayong, the UTS node and all of our collaborative institutional partners. This facility will enable us to image deeper within biological samples than we ever been able to before, with nanoscale resolution and extraordinary bandwidth stretching from the near-UV (400nm) well into the infrared (1650nm) spectrum.”

Prof Mark Hutchison, Professor at the Adelaide Medical School and Director of the CNBP at the University of Adelaide said, “This is an exciting development of advanced imaging infrastructure capacity that will allow a convergence of scientists from across the country to gain an unprecedented level of molecular insights into the complex systems and arrangement of cells in biologically relevant complex 3 dimensional environments.”

Participating Organisations include: Universities: University of Technology Sydney, RMIT University, University of Wollongong, University of Sydney, The University of Queensland, The University of New South Wales, Macquarie University, The University of Adelaide.

Institutes and Centres: Institute for Biomedical and Materials Devices, ARC Research Hub for Integrated Device for End-user Analysis at Low-levels, Institute for Molecular Horizons, the Heart Research Institute, ithree Institute, Centre for Translational Neuroscience, Australian Centre for Ecogenomics, ARC Centre of Excellence for Nanoscale BioPhotonics.

<ENDS>

CNBP tech transfer on show at STA event

11 October 2018:

CNBP science and it’s translation into exciting new commercial ventures  was on show at the ‘Science meets Business’ event held in Brisbane, October 11th, 2018.

The event, coordinated by STA, brought national and international corporate leaders and entrepreneurs, venture capitalists and angel investors together with Australian research and commercialisation pioneers, to help advance activity in the science and translation space.

First CNBP’er to present at the event was Chief Investigator Prof Jeremy Thompson who shared his amazing startup story in establishing the business ‘ART Lab Solutions’. The venture uses advanced reproductive technologies to accelerate the improvement of livestock quality.

Next up was the CNBP inspired start-up ‘MEQ Probe‘. Featuring presenters CNBP Director Prof Mark Hutchinson, Jordy Kitschke (CEO of MEQ Probe) and Susan McDonald (Managing Director of Super Butcher), all three discussed elements of the innovative start-up that offers industry an advanced spectral analysis tool that can objectively measure the quality of meat.

“MEQ is a story of success for the CNBP in bringing science together with business to solve a multi-billion dollar problem of objective meat quality measurement and assessment,” said Prof Hutchinson. “At CNBP we have made a conscious decision to actively solve real-world pain points, and engage entrepreneurs to turn amazing research into companies, of which MEQ Probe is an excellent example.”

A/Prof. Daniel Kolarich, CNBP Chief Investigator at Griffith University who also attended the event noted that, “Science meets Business impressively showed that translation does not necessarily correlate with the initial intention of the innovation – that the sky really is the limit when it comes to maximising return from research.”

Below: Smiles from the MEQ Probe team having completed their case study to an active and interested audience at ‘Science meets Business’.

Amperometric sensing device to detect cytokines

10 September 2018:

A new paper with CNBP co-authors Prof Mark Hutchinson, Prof Ewa Goldys and Dr Guozhen Liu demonstrates an amperometric sensing device based on graphene oxide (GO) and structure-switching aptamers for long-term detection of cytokines in a living organism.

Journal: ACS Applied Materials and Interfaces.

Publication title: Graphene Oxide Based Recyclable in Vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice.

Authors: Chaomin Cao, Ronghua Jin, Hui Wei, Wenchao Yang, Ewa M. Goldys, Mark R. Hutchinson, Shiyu Liu, Xin Chen, Guangfu Yang, and Guozhen Liu.

Abstract: Cytokine sensing is challenging due to their typically low abundances in physiological conditions. Nanomaterial fabricated interfaces demonstrated unique advantages in ultrasensitive sensing. Here, we demonstrate an amperometric sensing device based on graphene oxide (GO) and structure-switching aptamers for long-term detection of cytokines in a living organism. The device incorporates a single layer of GO acting as a signal amplifier on glassy carbon electrodes. The hairpin aptamers specific to interferon-γ (IFN-γ), which were loaded with redox probes, are covalently attached to GO to serve as biorecognition moieties. IFN-γ was able to trigger the configuration change of aptamers while releasing the trapped redox probes to introduce the electrochemical signal. This in vivo device was capable of quantitatively and dynamically detecting IFN-γ down to 1.3 pg mL–1 secreted by immune cells in cell culture medium with no baseline drift even at a high concentration of other nonspecific proteins. The biocompatible devices were also implanted into subcutaneous tissue of enteritis mice, where they performed precise detection of IFN-γ over 48 h without using physical barriers or active drift correction algorithms. Moreover, the device could be reused even after multiple rounds of regeneration of the sensing interface.

Future Fellowship success for CNBP researchers

13 August 2018:

In exciting grant funding news, ARC Future Fellowships were recently awarded to the following CNBP researchers:

Prof Mark Hutchinson (CNBP Director, pictured) – University of Adelaide. Measuring pain in livestock: mechanisms, objective biomarkers and treatments.

Dr Ivan Maksymov (CNBP Researcher Fellow) – RMIT University. Nonlinear optical effects with low-power non-laser light.

Dr Steven Wiederman (CNBP Associate Investigator) – University of Adelaide. From insects to robots: how brains make predictions and ignore distractions.

The Future Fellowships scheme supports research in areas of critical national importance by giving outstanding researchers incentives to conduct their research in Australia. Each Future Fellow recipient will receive salary and on-cost support for four years, and up to $50,000 in additional funding per year for other essential costs directly related to their project.

Congratulations to all Fellowship recipients who will now be able to further develop and advance their innovative areas of research! Further information on Fellowship projects are available from the ARC web site.

Vitamin D no defence against dementia

10 July 2018:

New research from South Australian scientists has shown that vitamin D (also commonly known as the sunshine vitamin) is unlikely to protect individuals from multiple sclerosis, Parkinson’s disease, Alzheimer’s disease or other brain-related disorders.

The findings, released today in the science journal ‘Nutritional Neuroscience’ reported that researchers had failed to find solid clinical evidence for vitamin D as a protective neurological agent.

“Our work counters an emerging belief held in some quarters suggesting that higher levels of vitamin D can impact positively on brain health,” says lead author Krystal Iacopetta (pictured), PhD candidate at the University of Adelaide.

“The results of our in-depth review and an analysis of all the scientific literature indicates that  there is no convincing evidence supporting vitamin D as a protective agent for the brain,” she says.

Mark Hutchinson, Director of the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Professor at the University of Adelaide worked with Ms Iacopetta on the research and findings.

“This outcome is important and is based on an extremely comprehensive review and analysis of current data and relevant scientific publications,” Professor Hutchinson says.

“We’ve broken a commonly held belief that vitamin D resulting from sun exposure is good for your brain.”

Interestingly, Professor Hutchinson notes that there may be evidence that UV light (sun exposure) could impact the brain beneficially, in ways other than that related to levels of vitamin D.

“There are some early studies that suggest that UV exposure could have a positive impact on some neurological disorders such as multiple sclerosis,” he says. “We have presented critical evidence that UV light may impact molecular processes in the brain in a manner that has absolutely nothing to do with vitamin D.”

“We need to complete far more research in this area to fully understand what’s happening,” says Professor Hutchinson.

Read the full media release here.

Journal: Nutritional Neuroscience.

Publication title: Are the protective benefits of vitamin D in neurodegenerative disease dependent on route of administration? A systematic review.

Authors: Krystal Iacopetta, Lyndsey E. Collins-Praino, Femke T. A. Buisman-Pijlman, Jiajun Liu, Amanda D. Hutchinson & Mark R. Hutchinson.

Blood test identifies chronic pain

6 May 2018:

Australian neuroscientist and CNBP Director, Professor Mark Hutchinson who is developing a world-first blood test that identifies chronic pain by colour “biomarkers” is featured by NZ Doctor online. Prof Hutchinson believes that the breakthrough work has the potential to revolutionise the diagnosis and treatment for the one in five people in Australia and New Zealand who suffer from chronic pain.