Tag Archives: Marco Capelli

Fresh Science with a nano-diamond twist

20 June 2018:

Approximately 100 patrons at the Belgian Beer Cafe in Melbourne were treated to ten researchers showcasing their science as part of the ‘Fresh Science’ initiative (Victoria), June 20th, 2018.

One of those ten researchers was CNBP student Marco Capelli from RMIT University who was a successful applicant to Fresh Science – a program that trains early career scientists on how to best communicate and present their  activity to the media and to the wider general public at large.

Studying the brain using ulta-small diamonds was the scientific narrative practiced and delivered by Marco as part of his public presentation at the Cafe.

“Fresh Science was an amazing experience,” says Marco.

“Over the course of two days, I had the chance to interact with journalists from different media (including television, radio and newspaper) as well as representatives from industry and policymakers. From each of them, I learned how to tailor my scientific exposition to a variety of audiences, how to highlight my research and how to successfully pitch my ideas.”

“I particularly enjoyed testing myself in front of professionals from each field as well as receiving immediate feedback on my presentation skills. Fresh Science is an experience I strongly endorse to any ECR researcher (PhD students included) looking to improve their communication skills.”

Below: CNBP PhD student Marco Capelli talks nano materials at the Belgian Beer Cafe in Melbourne. Image courtesy of Science in Public (Fresh Science).

Enhancement of the NV quantum yield

3 July 2017:

Researchers from CNBP’s RMIT University node (lead author CNBP PhD student Marco Capelli pictured), have had a paper published in the journal ‘Nanoscale’.

The researchers report an enhancement of the nitrogen-vacancy (NV) quantum yield by up to 7% in bulk diamond caused by an external magnetic field.

The paper is accessible online.

Journal: Nanoscale.

Publication title: Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield .

Authors: M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree and B. C. Gibson.

Abstract: The nitrogen-vacancy (NV) centre in diamond is a unique optical defect that is used in many applications today and methods to enhance its fluorescence brightness are highly sought after. We observed experimentally an enhancement of the NV quantum yield by up to 7% in bulk diamond caused by an external magnetic field relative to the field-free case. This observation is rationalised phenomenologically in terms of a magnetic field dependence of the NV excited state triplet-to-singlet transition rate. The theoretical model is in good qualitative agreement with the experimental results at low excitation intensities. Our results significantly contribute to our fundamental understanding of the photophysical properties of the NV defect in diamond.

New Diamond and Nano Carbons conference

1 June 2017:

CNBP was well represented at the 11th International Conference on New Diamond and Nano Carbons, held in Cairns, Australia, 28th May – June 1, 2017.

CNBP Chief Investigator A/Prof Brant Gibson was Co-chair of the conference (pictured) with CNBP researcher Dr Philipp Reineck a contributing speaker, presenting on ‘Bright and photostable nitrogen‐vacancy fluorescence from unprocessed detonation nanodiamonds’.

Also providing a contributing talk was CNBP’s Dr Lindsay Parker, ‘Applications of fluorescent nanodiamonds in cellular molecular tracing.’

Additionally,  CNBP’s Andrew Greentree, Ivan Maksymov, Daniel Drumm, Ashleigh Heffernan, Marco Capelli, Nicole Cordina and Emma Wilson gave poster presentations and Brooke Bacon and Desmond Lau provided administrative and technical support respectively.

The conference spanned research topics from fundamental physical and chemical concepts to applied technologically driven applications with carbon based materials. This including single crystal diamond, nanodiamonds, carbon nanotubes, graphene and other carbon nanostructures.

Science ‘Experience Day’ at RMIT

18 January 2017:

Researchers at CNBP’s RMIT University node were busy doing light-based demonstrations on Wednesday Jan 18th, as part of the ‘RMIT University Experience Day’ program, whereby students from years 10, 11 and 12 get to engage in hands-on workshops and explore life on campus while experiencing the differing aspects of University discipline areas.

As part of the ‘experience’ activity, over seventy high school students (predominantly in Year 10) visited the CNBP researchers in their physics laboratories. While there, students were given an overview of biophotonic science as well as laboratory research, and shown the exciting things that can be done with light including 3D scanning, fluorescence microscopy and more.

Below – CNBP researcher Philipp Reineck talks and demonstrates photonics to students.

 

 

 

New paper in ‘Nanoscale’

Low Res Edit 01065 December 2016:

A new publication from CNBP researchers (lead author Philipp Reineck pictured) demonstrates bright and photostable fluorescence from nitrogen-vacancy centers in unprocessed nanodiamond particle aggregates. The work has just been reported in the journal ‘Nanoscale’ and is accessible online.

Journal: Nanoscale.

Title: Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

Authors: P. Reineck, M. Capelli, D. W. M. Lau, J. Jeske, M. R. Field, T. Ohshim, A. D. Greentree and B. C. Gibson.

Abstract: Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent
nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for
the production of fluorescent NV nanodiamonds for use in bioimaging applications.