Tag Archives: Desmond Lau

Science ‘Experience Day’ at RMIT

18 January 2017:

Researchers at CNBP’s RMIT University node were busy doing light-based demonstrations on Wednesday Jan 18th, as part of the ‘RMIT University Experience Day’ program, whereby students from years 10, 11 and 12 get to engage in hands-on workshops and explore life on campus while experiencing the differing aspects of University discipline areas.

As part of the ‘experience’ activity, over seventy high school students (predominantly in Year 10) visited the CNBP researchers in their physics laboratories. While there, students were given an overview of biophotonic science as well as laboratory research, and shown the exciting things that can be done with light including 3D scanning, fluorescence microscopy and more.

Below – CNBP researcher Philipp Reineck talks and demonstrates photonics to students.




New paper in ‘Nanoscale’

Low Res Edit 01065 December 2016:

A new publication from CNBP researchers (lead author Philipp Reineck pictured) demonstrates bright and photostable fluorescence from nitrogen-vacancy centers in unprocessed nanodiamond particle aggregates. The work has just been reported in the journal ‘Nanoscale’ and is accessible online.

Journal: Nanoscale.

Title: Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

Authors: P. Reineck, M. Capelli, D. W. M. Lau, J. Jeske, M. R. Field, T. Ohshim, A. D. Greentree and B. C. Gibson.

Abstract: Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent
nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for
the production of fluorescent NV nanodiamonds for use in bioimaging applications.

Acoustically-Driven Trion & Exciton Modulation in Piezoelectric 2D MoS2

Brant Gibson Low Res4 January 2016:

CNBP’s A/Prof. Brant Gibson (CNBP CI) and Dr. Desmond Lau (CNBP Technical Officer) featured as co-authors in a recently published paper in the journal ‘Nano Letters’.

The paper exploited the recent discovery of the piezoelectricity in odd-numbered layers of two-dimensional molybdenum disulfide (MoS2), to show the possibility of reversibly tuning the photoluminescence of single and odd-numbered multilayered MoS2 using high frequency sound wave coupling.

As such, the work reveals several key fundamentals governing acousto-optic properties of odd-layered MoS2 that can be implemented in future optical and electronic systems.

Additional information can be found in the Journal ‘Nano Letters’ online.

Fluorescent nanodiamond material benchmarked at RMIT

cnbplogosquare128 April 2015 :

CNBP RMIT node has hosted Macquarie University PhD student Ishan Das Rastogi for a week long visit, to help benchmark commercial as well as in-house prepared fluorescent nanodiamond material, using confocal microscopy. A number of nanomaterial processing steps were also discussed during the visit and processing protocols shared and demonstrated. Desmond Lau, Brant Gibson and Philipp Reineck were directly involved in discussions, experiments and data analysis with Ishan.