Tag Archives: Brant Gibson

Your cells, now in 3D

18 June 2020:

There’s been an explosion in the use of endoscopes in medical procedures over the past 30 years, from examining the liver and stomach (known as laparoscopy) to minimally invasive surgery. The use of these instruments is firmly established as an imaging technique that allows surgeons to ‘see’ inside the body, allowing them to recognise lymph nodes they need to avoid, or assess the health of lung tissue, for example. Continue reading

CNBP welcomes UNSW engineering to the fold

10 September 2019:

CNBP has officially welcomed UNSW, one of the world’s leaders at translational engineering research, as its newest node.

In addition to the official open by UNSW Engineering Dean Professor Mark Hoffman, CNPB Director Professor Mark Hutchinson took the opportunity to lay out the CNBP mission and its accomplishments at an industry showcase. Continue reading

CNBP presents at IETS Conference

23 January 2019:

Prof Brant Gibson and Prof Jeremy Thompson (both CNBP Chief Investigators) have attended (and presented) at the  International Embryo Technology Society (IETS) conference held in New Orleans, January 20– 23, 2019.

A lunch presentation session sponsored by CNBP, provided both representatives with the opportunity to talk about CNBP as well as to provide information on the organisation’s latest research and activity, taking place in the imaging and reproduction spaces.

Areas covered included: research on improving in vitro embryo production (IVF) systems; the development of a purpose-built, multi-function, micron-scale embryo ‘housing’ device created via unique 3D-printing technology; discussion on advanced hyperspectral imaging techniques; and the development by CNBP researchers of a clip-on device to enhance the magnification of a mobile phone’s existing optics, enabling bull semen analysis.

“The CNBP presentation went even better than I was expecting and we had over 40 people in attendance,” said Prof Gibson.

“Everyone enjoyed the lunch and there were plenty of questions and discussion from key people in the field, during and after our presentations. ”

“Hopefully this will spark some future collaborations both from a research and translation point of view,” Prof Gibson concluded.

The IETS Conference is the preeminent meeting in animal biotechnology, covering a broad area from embryo production and transfer techniques to cloning and transgenesis. The conference attracted more than 600 attendees from all over the world.

Below: A/Prof Jeremy Thompson discusses use of photonic probes in the reproduction space.

Super-resolution volumetric imaging

11 December 2018:

The Australian Research Council (ARC) has announced funding for a super-resolution imaging facility that will be the first of its kind in Australia.

The facility brings together a consortium of multidisciplinary researchers from leading Australian Universities, Institutes and Research Centres (including CNBP) to develop new capacities for materials science, photonics devices, engineering, and neuroscience, microbial and cardiovascular research.

At its core the A$3.0m ARC LIEF project will enable scientists to study the inner workings of cells in their native environment. This represents a step change from currently imaging isolated 2D cells cultured in a petri dish to future research that will reveal subcellular structures and cell-to-cell communications in 3D tissue in real time.

The National Volumetric Imaging Platform, as it is known, will be installed, maintained and operated by the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) and the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at RMIT University in Melbourne. This project is scheduled to be completed in late 2019.

UTS Professor Dayong Jin, Lead Chief Investigator of the project, said that the facility will give scientists a “new way to decode the complexities of life science machinery.”

“High-resolution imaging of the large volume of single cells and functional navigation of their interactions will allow researchers to drop into a ‘street view’ and observe the details of intercellular ‘live traffic’,” he said.

Prof Brant Gibson, Co-Deputy Director and RMIT node director of CNBP said, “I am very excited to lead the RMIT University node of the National Volumetric Imaging Facility and to work in collaboration with Jin Dayong, the UTS node and all of our collaborative institutional partners. This facility will enable us to image deeper within biological samples than we ever been able to before, with nanoscale resolution and extraordinary bandwidth stretching from the near-UV (400nm) well into the infrared (1650nm) spectrum.”

Prof Mark Hutchison, Professor at the Adelaide Medical School and Director of the CNBP at the University of Adelaide said, “This is an exciting development of advanced imaging infrastructure capacity that will allow a convergence of scientists from across the country to gain an unprecedented level of molecular insights into the complex systems and arrangement of cells in biologically relevant complex 3 dimensional environments.”

Participating Organisations include: Universities: University of Technology Sydney, RMIT University, University of Wollongong, University of Sydney, The University of Queensland, The University of New South Wales, Macquarie University, The University of Adelaide.

Institutes and Centres: Institute for Biomedical and Materials Devices, ARC Research Hub for Integrated Device for End-user Analysis at Low-levels, Institute for Molecular Horizons, the Heart Research Institute, ithree Institute, Centre for Translational Neuroscience, Australian Centre for Ecogenomics, ARC Centre of Excellence for Nanoscale BioPhotonics.


CNBP input into major exhibition

11 May 2018:

The launch of a ground-breaking and unconventional permanent exhibition at Scienceworks titled ‘Beyond Perception: Seeing the Unseen’ had more than a touch of CNBP involvement with RMIT based researchers  A/Prof Brant Gibson and Dr Tony Orth involved in providing information, content and ideas to the exhibition over a 12-18 month planning and implementation period.

The exhibition, reflecting the latest and greatest stories from science and technology, provides interactive, large-scale experiences that reveals the invisible fields and forces that surround us, such as gravitational waves, invisible light, sound and aerodynamics. It also demonstrates current research which is continuing to uncover these amazing and tantalizing worlds.

“The areas where we contributed were around the use of the visible part of the electromagnetic spectrum for optical microscopy applications,” says A/Prof Brant Gibson.

“We looked at the the fact that the diffraction limit of a microscope has now been ‘broken’ with the development of superresolution microscopy such as STED or PALM.”

“It was an absolute pleasure to be involved in this type of activity that takes science out to the broader community,” says A/Prof Gibson.

“The exhibition provides an opportunity for people to immerse themselves and to deeply engage with the exhibition using sound, light and waves in ways which are radically different to other exhibitions I’ve seen.”

Information on the exhibition and how to visit can be found online.

Below – a quote from A/Prof Gibson forms part of an exhibition display.

Nano-diamond arrays on glass

23 August 2017:

Researchers from CNBP’s RMIT University node (lead author Ashleigh Heffernan), have published a paper demonstrating a directed self-assembly method to position nanodiamonds on glass. The method, allowing for the statistical quantification of fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

The paper is accessible online.

Journal: Scientific Reports.

Publication title: Nanodiamond arrays on glass for quantification and fluorescence characterisation.

Authors: Ashleigh H. Heffernan, Andrew D. Greentree & Brant C. Gibson.

Abstract: Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

Enhancement of the NV quantum yield

3 July 2017:

Researchers from CNBP’s RMIT University node (lead author CNBP PhD student Marco Capelli pictured), have had a paper published in the journal ‘Nanoscale’.

The researchers report an enhancement of the nitrogen-vacancy (NV) quantum yield by up to 7% in bulk diamond caused by an external magnetic field.

The paper is accessible online.

Journal: Nanoscale.

Publication title: Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield .

Authors: M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree and B. C. Gibson.

Abstract: The nitrogen-vacancy (NV) centre in diamond is a unique optical defect that is used in many applications today and methods to enhance its fluorescence brightness are highly sought after. We observed experimentally an enhancement of the NV quantum yield by up to 7% in bulk diamond caused by an external magnetic field relative to the field-free case. This observation is rationalised phenomenologically in terms of a magnetic field dependence of the NV excited state triplet-to-singlet transition rate. The theoretical model is in good qualitative agreement with the experimental results at low excitation intensities. Our results significantly contribute to our fundamental understanding of the photophysical properties of the NV defect in diamond.

New paper in ‘Nanoscale’

Low Res Edit 01065 December 2016:

A new publication from CNBP researchers (lead author Philipp Reineck pictured) demonstrates bright and photostable fluorescence from nitrogen-vacancy centers in unprocessed nanodiamond particle aggregates. The work has just been reported in the journal ‘Nanoscale’ and is accessible online.

Journal: Nanoscale.

Title: Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

Authors: P. Reineck, M. Capelli, D. W. M. Lau, J. Jeske, M. R. Field, T. Ohshim, A. D. Greentree and B. C. Gibson.

Abstract: Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent
nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for
the production of fluorescent NV nanodiamonds for use in bioimaging applications.

Near-infrared fluorescent nanomaterials

Low Res Edit 010628 October 2016:

CNBP researchers Philipp Reineck (pictured left) and A/Prof Brant Gibson explore recent advances in the development and use of near-infrared fluorescent nanomaterials for biomedical imaging and sensing applications in this just released review paper.

Journal: Advanced Optical Materials

Title: Near-Infrared Fluorescent Nanomaterials for Bioimaging and Sensing

Authors: Philipp Reineck and Brant Cameron Gibson

Abstract: A great challenge in noninvasive biomedical imaging is the acquisition of
images inside a biological system at the cellular level. Common modalities used today
such as magnetic resonance or computed tomography imaging have the advantage that
any part of a living organism can be imaged at any depth, but are limited to millimeter
resolution and can usually not be employed e.g., for surgical guidance. Optical imaging
techniques offer resolution on the 100 nanometer scale, but are limited by the strong
attenuation of visible light by biological matter and are traditionally used to image on the
surface. Near-infrared light in the “biological windows” can penetrate much deeper into
biological samples, rendering fluorescence-based imaging a viable alternative. In the past
two decades, many fluorescent nanomaterials have been developed to operate in the near
infrared, yet only few materials emitting above 1000 nm exist and none are approved for
clinical use. This review describes recent advances in the development and use of nearinfrared fluorescent nanomaterials for biomedical imaging and sensing applications. The physical and chemical properties as well as the bioconjugation and application of materials such as organic fluorophores, semiconductor quantum dots, carbon-based materials, rare earth materials, and polymer particles are discussed.

The paper is accessible online.



Acoustically-Driven Trion & Exciton Modulation in Piezoelectric 2D MoS2

Brant Gibson Low Res4 January 2016:

CNBP’s A/Prof. Brant Gibson (CNBP CI) and Dr. Desmond Lau (CNBP Technical Officer) featured as co-authors in a recently published paper in the journal ‘Nano Letters’.

The paper exploited the recent discovery of the piezoelectricity in odd-numbered layers of two-dimensional molybdenum disulfide (MoS2), to show the possibility of reversibly tuning the photoluminescence of single and odd-numbered multilayered MoS2 using high frequency sound wave coupling.

As such, the work reveals several key fundamentals governing acousto-optic properties of odd-layered MoS2 that can be implemented in future optical and electronic systems.

Additional information can be found in the Journal ‘Nano Letters’ online.