Tag Archives: Ayad Anwer

Maximizing particle concentration

28 April 2017:

A new paper from CNBP researchers reports on an improvement to deterministic lateral displacement arrays, which allows for higher particle concentration enhancement. The work has just been published in the journal ‘Biomicrofluidics’ and is accessible online.

Journal: Biomicrofluidics.

Title: Maximizing particle concentration in deterministic lateral displacement arrays.

Authors: Shilun Feng, Alison M. Skelley, Ayad G. Anwer (pictured top left), Guozhen Liu and David W. Inglis.

Abstract: We present an improvement to deterministic lateral displacement arrays, which allows higher particle concentration enhancement. We correct and extend previous equations to a mirror-symmetric boundary. This approach allows particles to be concentrated into a central channel, no wider than the surrounding gaps, thereby maximizing the particle enrichment. The resulting flow patterns were, for the first time, experimentally measured. The performance of the device with hard micro-spheres and cells was investigated. The observed flow patterns show important differences from our model and from an ideal pattern. The 18 μm gap device showed 11-fold enrichment of 7 μm particles and nearly perfect enrichment—of more than 50-fold—for 10 μm particles and Jurkat cells. This work shows a clear path to achieve higher-than-ever particle concentration enhancement in a deterministic microfluidic separation system.


Gold nanoparticles for bioimaging

22 March 2017:

A new publication from CNBP researchers (lead author Sandhya Clement pictured) reports on a more effective and less harmful gold-based nano-agent for bioimaging and photodynamic therapy treatment for deep tissue tumors.

The work has just been reported in the journal ‘Microchimica Acta ’ and is accessible online.

Journal: Microchimica Acta.

Title: Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy.

Authors: Sandhya Clement, Wenjie Chen, Ayad G. Anwer & Ewa M. Goldys.

Abstract: Photodynamic therapy (PDT) uses photosensitizers, light and molecular oxygen to generate cytotoxic reactive oxygen species. Its effectiveness is limited to <1 cm due to the limited penetration depth of light. The present study compares the PDT effectivity of the photosensitizer verteporfin (VP) conjugated to gold nanoparticles (AuNPs) (a) by using deeply penetrating X-rays administered in standard radiotherapy doses, and (b) by using red light (690 nm). VP was conjugated to AuNPs of around 12 nm size to enhance the interaction of ionizing radiation with PS. For comparison, VP also was directly exposed to X-rays. It is found that VP alone is stimulated by X-rays to generate singlet oxygen. The conjugate to AuNPs also generated a significant amount of singlet oxygen on irradiation with X-rays in comparison to illumination with 690-nm light. It is also found that the rate of singlet oxygen generation is amplified in case of AuNP-conjugated VP compared to VP alone. The performance of the AuNP-VP conjugate and of the VP alone was tested in Panc 1 cells. Their viability was impaired much more in these two scenarios than with the X-ray radiation only. This suggests excellent perspectives for PDT based on VP and with X-ray stimulation, both as a stand-alone photosensitizer and in Au-NP conjugates. Moreover, both VP and AuNP-VP conjugates show bright fluorescence in physiological media for excitation/emission wavelengths in the range of 405/690 nm; hence they can also be used for simultaneous bioimaging.

Hyperspectral unmixing methodology validated

Aziz Rehman10 February 2017:

A new publication from CNBP researchers Aziz Ul Rehman (pictured), Ayad Anwer, Martin Gosnell, Saabah Mahbub, Guozhen Liu and Ewa Goldys demonstrates the validation of an innovative hyperspectral unmixing methodology, that can derive chemical information from cell colour.

The work has just been reported in the journal ‘Biomedical Optics Express’ and is accessible online.

Journal: Biomedical Optics Express.

Title: Fluorescence quenching of free and bound NADH in HeLa cells determined by hyperspectral imaging and unmixing of cell autofluorescence.

Authors: Aziz Ul Rehman, Ayad G. Anwer, Martin E. Gosnell, Saabah B. Mahbub, Guozhen Liu, and Ewa M. Goldys.

Abstract: Carbonyl cyanide-p-trifluoro methoxyphenylhydrazone (FCCP) is a well-known mitochondrial uncoupling agent. We examined FCCP-induced fluorescence quenching of reduced nicotinamide adenine dinucleotide / nicotinamide adenine dinucleotide phosphate (NAD(P)H) in solution and in cultured HeLa cells in a wide range of FCCP concentrations from 50 to 1000µM. A non-invasive label-free method of hyperspectral imaging of cell autofluorescence combined with unsupervised unmixing was used to separately isolate the emissions of free and bound NAD(P)H from cell autofluorescence. Hyperspectral image analysis of FCCP-treated HeLa cells confirms that this agent selectively quenches fluorescence of free and bound NAD(P)H in a broad range of concentrations. This is confirmed by the measurements of average NAD/NADH and NADP/NADPH content in cells. FCCP quenching of free NAD(P)H in cells and in solution is found to be similar, but quenching of bound NAD(P)H in cells is attenuated compared to solution quenching possibly due to a contribution from the metabolic and/or antioxidant response in cells. Chemical quenching of NAD(P)H fluorescence by FCCP validates the results of unsupervised unmixing of cell autofluorescence.