Tag Archives: Andrei Zvyagin

Grant success

30 January 2017:

CNBP researchers at Macquarie University – Research Fellow Lindsay Parker (pictured left) and A/Prof Andrei Zvyagin have been successful as Chief Investigators on a $100,000 Macquarie University Research Infrastructure Block Grant.

The grant will support a research assistant (Anna Guller, CNBP PhD candidate) to help build capacity in and use Macquarie University’s bioreactor equipment towards the production and maintenance of live bioartificial tissues for sustainable scientific use.

The CNBP researchers will be collaborating with the University’s Faculty of Medicine to use these artificial biotissues in order to assess nanoparticle detection capabilities/depths in complex tissue structures.

Lead CI on the grant is Professor Qian Yi in the Faculty of Medicine.

Deep-penetrating photodynamic therapy

4 January 2017:

CNBP researchers (Liuen Liang pictured), report on the deployment of upconversion nanoparticles to enhance the treatment depth of the fluorescent protein KillerRed in photodynamic therapy.

The work was published in the journal ‘Acta Biomaterialia’ and is accessible online.

Journal: Acta Biomaterialia.

Title: Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.

Authors: Liuen Liang, Yiqing Lu, Run Zhang, Andrew Care, Tiago A. Orteg, Sergey M. Deyev, Yi Qian, Andrei V. Zvyagina.

Abstract: The fluorescent protein KillerRed, a new type of biological photosensitizer, is considered as a promising substitute for current synthetic photosensitizes used in photodynamic therapy (PDT). However, broad application of this photosensitiser in treating deep-seated lesions is challenging due to the limited tissue penetration of the excitation light with the wavelength falling in the visible spectral range. To overcome this challenge, we employ upconversion nanoparticles (UCNPs) that are able to convert deep-penetrating near infrared (NIR) light to green light to excite KillerRed locally, followed by the generation of reactive oxygen species (ROS) to kill tumour cells under centimetre-thick tissue. The photosensitizing bio-nanohybrids, KillerRed-UCNPs, are fabricated through covalent conjugation of KillerRed and UCNPs. The resulting KillerRed-UCNPs exhibit excellent colloidal stability in biological buffers and low cytotoxicity in the dark. Cross-comparison between the conventional KillerRed and UCNP-mediated KillerRed PDT demonstrated superiority of KillerRed-UCNPs photosensitizing by NIR irradiation, manifested by the fact that ∼70% PDT efficacy was achieved at 1-cm tissue depth, whereas that of the conventional KillerRed dropped to ∼7%.

Nanophotonics for undergraduates at Macquarie

Prof Ewa Goldys29 July 2014: Formal lectures in  nanobiophotonics  will commence this coming Monday at Macquarie University.

This formal unit of study (PHYS 704) covers current research directions at the interface of nanotechnology and biophotonics, addressing a common gap in the physics/engineering undergraduate curriculum. Students will learn about the principal types of nanomaterials and nanostructures with the underpinning physics and chemistry.  They will gain familiarity with photonics techniques that relate to biological applications such as advanced microscopy and image analysis. There is emphasis on applications and significance of nanomaterials in the life sciences. The lectures will  cover various Nanosafety, instrumentation and core measurement techniques which are applicable in nanotechnology and biophotonics will also be discussed.

The unit forms part of Macquarie Masters of Research degree program. It is taught by Professor Ewa Goldys (CNBP CI) and A/Prof Andrei Zvyagin (CNBP AI)  from Macquarie. The unit has been offered in 2013 and it received enthusiastic exit reports from its graduates.