ECR Award goes to Dr Philipp Reineck

14 February 2019:

Congratulations to CNBP Associate Investigator Dr Philipp Reineck (RMIT VC Research Fellow), who has been awarded an RMIT University School of Science ‘Early Career Researcher Award’ for his outstanding research outputs and achievements in 2018.

Recognized was Philipp’s publication output. This included ten papers (with three  officially published in 2019). Also his four invited talks given at international conferences in the USA, Europe and Australia, together with his successful funding from the Australian Synchrotron to do 3D bioimaging experiments at the Spanish synchrotron.

A fantastic effort Philipp!

Below – Dr Philipp Reineck receiving his award.


Ruthenium-based sensor detects nitric oxide

8 February 2019:

In a new publication, a responsive Ruthenium-based luminescence sensor was employed as a molecular probe for detecting nitric oxide (NO). The research suggests potential clinical utility for the measurement of soluble NO in the circulation system and possibly tissue. Lead authors of this paper are CNBP’s Dr Achini Vidanapathirana and Benjamin Pullen (both based at SAHMRI).

Journal: Scientific Reports.

Publication title:  A Novel Ruthenium-based Molecular Sensor to Detect Endothelial Nitric Oxide.

Authors: Achini K. Vidanapathirana, Benjamin J. Pullen, Run Zhang, MyNgan Duong, Jarrad M.Goyne, Xiaozhou Zhang, Claudine S. Bonder, Andrew D.Abell, Christina A. Bursill, Stephen J. Nicholls & Peter J. Psaltis.

Abstract: Nitric oxide (NO) is a key regulator of endothelial cell and vascular function. The direct measurement of NO is challenging due to its short half-life, and as such surrogate measurements are typically used to approximate its relative concentrations. Here we demonstrate that ruthenium-based [Ru(bpy)2(dabpy)]2+ is a potent sensor for NO in its irreversible, NO-bound active form, [Ru(bpy)2(T-bpy)]2+. Using spectrophotometry we established the sensor’s ability to detect and measure soluble NO in a concentration-dependent manner in cell-free media. Endothelial cells cultured with acetylcholine or hydrogen peroxide to induce endogenous NO production showed modest increases of 7.3 ± 7.1% and 36.3 ± 25.0% respectively in fluorescence signal from baseline state, while addition of exogenous NO increased their fluorescence by 5.2-fold. The changes in fluorescence signal were proportionate and comparable against conventional NO assays. Rabbit blood samples immediately exposed to [Ru(bpy)2(dabpy)]2+ displayed 8-fold higher mean fluorescence, relative to blood without sensor. Approximately 14% of the observed signal was NO/NO adduct-specific. Optimal readings were obtained when sensor was added to freshly collected blood, remaining stable during subsequent freeze-thaw cycles. Clinical studies are now required to test the utility of [Ru(bpy)2(dabpy)]2+ as a sensor to detect changes in NO from human blood samples in cardiovascular health and disease.

Gold nanomembranes with nanoholes

1 February 2019:

In a break-through in the field of nano membrane related research, CNBP alumni scientist Dr Peipei Jia and colleagues report on the development of large-area freestanding gold nanomembranes with nanohole arrays fabricated using a replication-releasing procedure. More information available below!

Journal: Materials Horizons.

Publication title:  Large-area Freestanding Gold Nanomembranes with Nanoholes.

Authors: Peipei Jia, Kamil Zuber, Qiuquan Guo, Brant C. Gibson, Jun Yang and Heike Ebendorff-Heidepriem.

Abstract: Thin metal films with nanohole arrays have opened up new opportunities in applications ranging from plasmonics to optoelectronics. However, their dependence on substrates limits not only their performance but also other application possibilities. A key challenge to overcome this limitation is to make these nanostructured films substrate-free. Here we report large-area freestanding gold nanomembranes with nanohole arrays fabricated using a replication-releasing procedure. The structures maintain spatial uniformity and pristine quality after release across the entire membrane up to 75 cm2 in area and as thin as 50 nm. The freestanding nanomembranes show significantly enhanced optical transmission and effective field extension compared to the same nanomembranes on substrates. A plasmonic coupling resonance with a 2.7 nm linewidth achieves a record figure-of-merit of 240 for refractive index sensing. The gold nanomembranes can be geometrically converted to 3D microstructures by ion-irradiation-based kirigami technique. The transformed micro-objects can be precisely controlled via geometry design and strategic cutting. Furthermore, we find the presence of nanoholes can significantly change the in-plane modulus of the gold nanomembranes. Finally, the freestanding gold nanomembranes can be transferred to non-planar substrates, enabling their future integration with advanced optical and electronic systems for emerging applications.

Fraunhofer IAF visit

29 January 2019:

CNBP PhD student, Marco Capelli (RMIT) has recently undertaken a three month residency at the Fraunhofer IAF (Institute for Applied Solid State Physics) in Freiburg, Germany.  He reports on his work and collaborative activity there, focused on furthering the measurement of magnetic fields with diamond crystals.

During the months from October to December I worked with the group of Diamond Magnetometry at the Fraunhofer IAF (Institute for Applied Solid State Physics) in Freiburg, Germany.

The group leader Dr. Jan Jeske already collaborated with the CNBP in the past. His group is developing a new technique, building a laser from the fluorescence of diamond and using the enhanced signal to develop a more compact and less expensive diamond device able to perform magnetoencephalography (MEG) with high resolution and sensitivity.

At the Fraunhofer IAF I worked on our common goal of pushing further the ability of measuring magnetic fields with diamond crystals. It was a full collaborative work that put together my knowledge about magnetometry, helping optimising their existing setups and experimental procedures, with their ability to grow diamond samples with specific and tailored characteristics, searching for the best diamond to use.

I was able to compare the sample I previously used in my studies with their diamond samples and study how they differ and which are the best suited for magnetometry. This comparison is still at the beginning and our groups will further collaborate in the near future to get a full understanding of the diamond material.

The work helped me learn and better understand how diamonds can be created, how much they can be ‘customised’ and which parameters to keep in mind when choosing the appropriate diamond to use in my experiments. The students and researchers I met were keen to share their expertise and show me their advanced facilities to grow diamond. In addition it was a great learning experience to work at the institute itself. As the institute is more focused with practical applications and connecting with industry, it was personally interesting to see the differing kinds of management and organisational structures in place there.

Below: Marco (third left) with the  Diamond Magnetometry team.

Not all fluorescent nanodiamonds are created equal

28 January 2019:

Hundreds of individual tiny fluorescent diamond particles have been imaged and characterized by CNBP researchers, reported in the journal ‘Particle & Particle Systems Characterization’.

Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics.

The study identifies opportunities to improve the properties of single fluorescent nanodiamonds, to develop a better understanding of their underlying physical mechanisms and to advance current nanofabrication technologies.

Lead author on the paper is CNBP Associate Investigator Dr Philipp Reineck at RMIT University.

Journal: Particle & Particle Systems Characterization.

Publication title:  Not All Fluorescent Nanodiamonds Are Created Equal: A Comparative Study.

Authors: Philipp Reineck; Leevan Fremiot Trindade, Jan Havlik, Jan Stursa, Ashleigh Heffernan, Aaron Elbourne, Antony Orth, Marco Capelli, Petr Cigler, David A. Simpson, Brant C. Gibson.

Abstract: Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics. Yet, understanding and engineering the properties of fluorescent defects in nanodiamonds remain challenging. The most comprehensive study to date is presented, of the optical and physical properties of five different nanodiamond samples, in which fluorescent nitrogen‐vacancy (NV) centers are created using different fabrication techniques. The FNDs’ fluorescence spectra, lifetime, and spin relaxation time (T1) are investigated via single‐particle confocal fluorescence microscopy and in ensemble measurements in solution (T1 excepted). Particle sizes and shapes are determined using scanning electron microscopy and correlated with the optical results. Statistical tests are used to explore correlations between the properties of individual particles and also analyze average results to directly compare different fabrication techniques. Spectral unmixing is used to quantify the relative NV charge‐state (NV− and NV0) contributions to the overall fluorescence. A strong variation is found and quantified in the properties of individual particles within all analyzed samples and significant differences between the different particle types. This study is an important contribution toward understanding the properties of NV centers in nanodiamonds. It motivates new approaches to the improved engineering of NV‐containing nanodiamonds for future applications.

Tailoring third-harmonic generation

25 January 2019:

CNBP Associate Investigator Dr Stephen C. Warren-Smith is lead author on a new publication that has demonstrated multi-wavelength third-harmonic generation from an exposed-core microstructured optical fibre.

Journal: Optics Letters.

Publication title: Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber.

Authors: Stephen C. Warren-Smith, Kay Schaarschmidt, Mario Chemnitz, Erik P. Schartner, Henrik Schneidewind, Heike Ebendorff-Heidepriem, and Markus A. Schmidt.

Abstract: We demonstrate that exposed-core microstructured optical fibers offer multiple degrees of freedom for tailoring third-harmonic generation through the core diameter, input polarization, and nanofilm deposition. Varying these parameters allows control of the phase-matching position between an infrared pump wavelength and the generated visible wavelengths. In this Letter, we show how increasing the core diameter over previous experiments (2.57 μm compared to 1.85 μm) allows the generation of multiple wavelengths, which can be further controlled by rotating the input pump polarization and the deposition of dielectric nanofilms. This can lead to highly tailorable light sources for applications such as spectroscopy or nonlinear microscopy.

New CNBP researcher at Macquarie University

25 January 2019:

CNBP is happy to announce its newest Research Fellow based at Macquarie University, Dr Simone De Camillis.

Simone will be working with CNBP Chief Investigator Prof. Jim Piper and his team to further explore the UCNP super-resolution technology for advanced biological applications, as well as collaborate across the wider CNBP community.

Simone completed his PhD at Queen’s University Belfast where he investigated ultrafast electrodynamics in nucleosides and aromatic amino acids. Studying the photo-chemistry of the building blocks of life is a fundamental step for understanding processes leading to mutation, damage and the alteration of the biological functions of the relative macro-molecule.

He has also worked as experimental physicist at the French Research Centre CEA in the optical characterisation of HgCdTe Infrared array detectors used for space and astrophysics applications.

His expertise includes femtosecond and attosecond laser technology, pump-probe interferometric systems, ultrafast molecular dynamics and time-of-flight mass spectroscopy.

Welcome to the team Simone!

CNBP presents at IETS Conference

23 January 2019:

Prof Brant Gibson and Prof Jeremy Thompson (both CNBP Chief Investigators) have attended (and presented) at the  International Embryo Technology Society (IETS) conference held in New Orleans, January 20– 23, 2019.

A lunch presentation session sponsored by CNBP, provided both representatives with the opportunity to talk about CNBP as well as to provide information on the organisation’s latest research and activity, taking place in the imaging and reproduction spaces.

Areas covered included: research on improving in vitro embryo production (IVF) systems; the development of a purpose-built, multi-function, micron-scale embryo ‘housing’ device created via unique 3D-printing technology; discussion on advanced hyperspectral imaging techniques; and the development by CNBP researchers of a clip-on device to enhance the magnification of a mobile phone’s existing optics, enabling bull semen analysis.

“The CNBP presentation went even better than I was expecting and we had over 40 people in attendance,” said Prof Gibson.

“Everyone enjoyed the lunch and there were plenty of questions and discussion from key people in the field, during and after our presentations. ”

“Hopefully this will spark some future collaborations both from a research and translation point of view,” Prof Gibson concluded.

The IETS Conference is the preeminent meeting in animal biotechnology, covering a broad area from embryo production and transfer techniques to cloning and transgenesis. The conference attracted more than 600 attendees from all over the world.

Below: A/Prof Jeremy Thompson discusses use of photonic probes in the reproduction space.

Light-based imaging in the body

22 January 2019:

Senior  indigenous students were given an insight into life as an academic researcher, as well as provided with an overview of light-based imaging in the body, following an outreach presentation undertaken by CNBP’s Dr Annemarie Nadort at Macquarie University.

Dr Nadort’s presentation (the challenge of exploring blood as it circulates through the body) and hands-on demonstration of a clinical micro-circulation imager supported Walanga Muru’s ‘Camp Aspire’ program. Camp Aspire sees approximately fifty Aboriginal and Torres Strait Islander students (in Year 11/12) spend three days at Macquarie University to discover  tertiary options, explore the campus and make potential  connections related to future study.

“I hope to inspire students with my research journey as well as to  show them that a science degree can help open multiple doors when it comes to future career options,” says Dr Nadort. “The skills you learn at University are valuable and will stand you in good stead regardless of what you end up doing.”

Co-presenting the outreach session with Dr Nadort was Macquarie University’s Professor Orsola De Marco. She spoke to students about her own career journey as an astrophysicist and discussed the importance of tackling gender imbalance by encouraging more women to undertake STEM related study.

Below: Dr Annemarie Nadort explains the properties of light and how it can be best used to explore the inner workings of the body.

New researcher joins Adelaide team

22 January 2019:

CNBP welcomes its newest research recruit to Adelaide University, Dr Erin Smith.

Dr Smith will be working with CNBP Chief Investigator Prof. Andrew Abell and his group to explore the synthesis of photoswitchable inhibitors.

Previously, Dr Smith completed a PhD in synthetic chemistry at Curtin University in collaboration with Epichem. She was investigating new biosynthesis inhibitors as a new drug lead for the treatment of Chagas disease.

She has also worked as a postdoctoral researcher at Bayer in Germany. There she was employed as part of the Herbicide Innovation Partnership between Bayer and GRDC (Grains Research and Development Corporation) investigating the synthesis of compounds as potential herbicides for Australian agriculture.

A big welcome to the CNBP team Erin!