Category Archives: UA

New CNBP partnership announced

13 June 2018:

The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) is pleased to announce that the Changchun Institute of Applied Chemistry (CIAC) is now a Partner Organisation of the CNBP with Dr Xiaohui Wang (pictured) leading the relationship from the CIAC side as a formal CNBP Partner Investigator.

Collaboration activity to take place between CNBP and CIAC will be focused in the areas of innate immune targeted biosensors and novel pharmacology. More specifically, CIAC expertise will feed into CNBP’s advanced research program exploring the impact of innate immune signalling in pain processing.

In a similar manner, CNBP will bring to CIAC and Dr Xiaohui Wang’s team a unique set of pre-clinical behavioural models and application areas that will advance the CIAC research program more broadly across the synthetic chemistry space.

Prof Mark Hutchinson, CNBP Director, noted that Dr Xiaohui Wang already possessed strong linkages with CNBP following Dr Wang’s visits to several CNBP nodes, and the decadal collaboration between the two researchers stemming from their time working together at the Center for Neuroscience at the University of Colorado, Boulder USA.

“I look forward to our future co-operative activity,” says Prof Mark Hutchinson. “CNBP and CIAC are an excellent strategic partnership fit in the novel innate immune targeted chemistry and pain-signalling space and I’m extremely excited to see where our joint research activity takes us.”

As a part of the partnership, CIAC will fund a full-time PhD student working on CNBP-CIAC related projects as well as provide additional research funding to support project activity and materials.

Below – Dr Xiaohui Wang.

Seminar and lab visit at Zhejiang University

7 June 2018:

CNBP’s Dr Jiawen Li has given a science talk at the College of Optical Science and Engineering, Zhejiang University, China, 7th June, 2018. The talk’s title was ‘Miniaturized multimodal fibre-optic probes for biomedical applications’.

While at the college, Dr Li also visited laboratories specialising in super resolution microscopy, holography and optical coherence tomograpy (OCT). She also shared with undergraduate and master students, her experiences of studying in both the United States and Australia, and provided her perspective on potential career paths for post-doctorate researchers.

Commercialisation workshop outlines opportunities

17 May 2018:

Thursday 17th May saw CNBP, The Institute for Photonics and Advanced Sensing (IPAS) and Adelaide Enterprise come together at the University of Adelaide to jointly host a well-attended Commercialisation Workshop.

The event, with 45 participants comprising CNBP/IPAS researchers, students, Centre Associate Investigators and Chief Investigators looked to provide information, advice and discussion on commercialising technologies successfully, best-practice in starting and exiting start-ups, as well as tips for successful working relationships between academics and industry.

CNBP’s Business Development Manager Mel Trebilcock who helped coordinate the workshop saw the day as a great success.

“Firstly, Adelaide Enterprise provided an overview of a tech transfer office, templates relating to Invention Disclosures, Patents and the step by step process for a researcher ready to start the commercialisation process.”

“Then we had guest speakers – Melissa McBurnie (Brandon Capital) and Stewart Bartlett (from spinout company Ferronova), discuss their history of success and failure along the technology-translation journey, as well as talk about alternate  career pathways for researchers. They both provided some fantastic insights, including the adage that it’s okay to fail but that there is the need to stay positive and focused on your desired research outcomes.”

The afternoon session of the workshop saw attendees break-up into smaller groups and undertake a practical hands-on exercise whereby they had to work-up an invention based on household waste, to fill-out an invention disclosure, and to then provide a pitch to the whole room.

“This allowed for great involvement and interaction with an amazing amount of commercialisation experience being shared by attendees and guests,” says Mel Trebilcock.

New commercialisation workshops are also being planned by the CNBP for August.

“These will help prepare colleagues and collaborators to refine and learn the art of pitches with industry. It will also help them to lead ‘pitch teams’ presenting at a ‘Shark Tank’ style event to be held at this year’s CNBP Conference at Lorne,” she says.

A successful CNBP/IPAS commercialisation workshop at the University of Adelaide.

Outreach at Adelaide High School

17 May 2018:

Superstar of STEM and CNBP researcher Dr Sanam Mustafa has taken her outreach skills to Adelaide High School, speaking to approximately 300 Year 9 students (across two sessions) about her scientific activity, her career as a scientist and what it takes to succeed in a University environment.

“My talk was extremely well received by the students and teaching staff,” said Dr Mustafa. “They loved the personal stories and hearing about the light-focused science that we do at the CNBP.”

As part of her outreach activity at the school,  Dr Mustafa also ran an interactive workshop  for students, aimed at illustrating the importance of developing tests to quantify levels of pain for both human and animal populations.

“The students, in groups of about 10 were asked to discuss painful conditions that they had experienced and to try to find a common experience (maybe a paper cut or sprained ankle for instance). I then asked them to rate their pain from a scale of 1-10 to see how this varied within the group to demonstrate the subjectivity,” says Dr Mustafa.

“I then asked the groups to discuss if and why this subjectivity is a problem – such as inability of small children to describe pain, an inaccurate description of pain resulting in the administration of wrong medication and deliberate manipulation of pain scores for drug seeking behaviour.”

“Finally, I told the students how I hoped to develop a test to quantify pain to help overcome this subjectivity and showed them a slide demonstrating the ‘colour of pain’ from our ongoing hyperspectral work.”

“Feedback from the day was extremely positive,” concluded Dr Mustafa. “And it was fantastic to see so many engaged students actively thinking about science and how it has the potential to have such a beneficial and positive impact on society.”

Below – Adelaide High School visited by CNBP’s Dr Sanam Mustafa.

A novel, high sensitivity Sagnac-interferometer biosensor

30 April 2018:

A new publication featuring CNBP co-authors (Dr Stephen Warren-Smith pictured left and Prof Heike Ebendorff-Heidepriem) reports on the design and implementation of a novel, high sensitivity Sagnac-interferometer biosensor based on an exposed core microstructured optical fiber (ECF).

Journal: Sensors and Actuators B: Chemical.

Publication title: High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber.

Authors: Xuegang Li, Linh V. Nguyen, Yong Zhao, Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith.

Abstract: A novel, high sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber (ECF) has been designed and implemented in this paper. The exposed core fiber has noncircular symmetry and thus exhibits birefringence and can form a sensing element within a Sagnac loop interferometer. The exposed-core fiber design provides direct access to the evanescent field, allowing the measurement of bulk refractive index (RI) with a sensitivity of up to −3137 nm/RIU while maintaining the fiber’s robustness. The sensor can also detect the localized refractive index changes at the fiber core’s surface as the result of a biological binding event. We demonstrate the use of this sensor for label-free sensing of biological molecules by immobilizing biotin onto the fiber core as the probe to capture the target molecule streptavidin.

Fellowship supports ongoing study into chronic pain

26 April 2018:

The Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Council Centre of Excellence is pleased to announce that Logan Jenkins, a researcher at Vanderbilt University, USA, is the successful recipient of the CNBP-American Australian Association (AAA) Fellowship for 2018.

The Fellowship, coordinated by the AAA and funded by the CNBP, provides US$30,000 to support an American graduate student, PhD or early career Postdoctoral Fellow who wishes to conduct collaborative research at a CNBP research node in Australia.

In this instance, it will allow Logan Jenkins, who specialises in Biophotonics, to take forward research that will explore how light can be used to control neuronal activity, as well as to examine how such techniques potentially impact the body’s neuroimmune system.

This area of study will directly align with CNBP’s activity in the chronic pain space says Mark Hutchinson, CNBP Director and Professor at the University of Adelaide.

“Within the CNBP we examine the working neuroimmune interface at a cellular level and in particular, how the brain’s immune-like cells are linked to chronic pain, a condition that affects millions of people world-wide,” Professor Hutchinson says.

“We will work closely with Logan to see how his light-based neuronal control mechanisms, and neuroimmune related study, links to our own advanced research in this area.”

Jenkins is looking forward to meeting the CNBP research team in Australia.

“This Fellowship will give me the opportunity to work closely with a prestigious Centre of Excellence and I look forward to conducting some excellent and impactful research. I also hope to build scientific friendships that will lead to ongoing collaborations and discovery,” he says.

Prof Mark Hutchinson welcomed the Fellowship appointment.

“The CNBP seeks to conduct international cutting-edge research in Biophotonics. In order to do this we need to have the best people in the world collaborating with us. This includes rising stars like Logan who comes to us from the Vanderbilt Biophotonics Center, an outstanding organisation which leads the world in ‘neuronal control by light’ investigation.”

“Logan will be based primarily at the University of Adelaide during this Fellowship and will also spend time at CNBP’s other research nodes as he explores his research program in the Centre,” says Professor Hutchinson.

Further information on the United States to Australia Scholarships can be found online at the American Australian Association website. The AAA seeks to build closer USA to Australia ties.

The research is also being supported by the Air Force Office of Scientific Research (AFOSR) and enabled through access to the Australian National Fabrication Facility (ANFF).

Below – Logan Jenkins.

Sensing magnesium

17 April 2018:

A new publication from CNBP researchers (lead author Georgina Sylvia pictured), presents the rational design and photophysical characterisation of spiropyran-based chemosensors for magnesium.

Journal: Chemosensors.

Publication title: A Rationally Designed, Spiropyran-Based Chemosensor for Magnesium.

Authors: Georgina M. Sylvia, Adrian M. Mak, Sabrina Heng, Akash Bachhuka, Heike Ebendorff-Heidepriem, and Andrew D. Abell.

Abstract: Magnesium ions (Mg2+) play an important role in mammalian cell function; however, relatively little is known about the mechanisms of Mg2+ regulation in disease states. An advance in this field would come from the development of selective, reversible fluorescent chemosensors, capable of repeated measurements. To this end, the rational design and fluorescence-based photophysical characterisation of two spiropyran-based chemosensors for Mg2+ are presented. The most promising analogue, chemosensor 1, exhibits 2-fold fluorescence enhancement factor and 3-fold higher binding affinity for Mg2+ (Kd 6.0 µM) over Ca2+ (Kd 18.7 µM). Incorporation of spiropyran-based sensors into optical fibre sensing platforms has been shown to yield significant signal-to-background changes with minimal sample volumes, a real advance in biological sensing that enables measurement on subcellular-scale samples. In order to demonstrate chemosensor compatibility within the light intense microenvironment of an optical fibre, photoswitching and photostability of 1 within a suspended core optical fibre (SCF) was subsequently explored, revealing reversible Mg2+ binding with improved photostability compared to the non-photoswitchable Rhodamine B fluorophore. The spiropyran-based chemosensors reported here highlight untapped opportunities for a new class of photoswitchable Mg2+ probe and present a first step in the development of a light-controlled, reversible dip-sensor for Mg2+.

Fibre-needle probe for imaging and sensing in deep tissue

6 April 2018:

A world-first tiny fibre-optic probe that can simultaneously measure temperature and sense deep inside the body has been reported by CNBP/IPAS researchers. According to lead author of the research, Dr Jiawen Li at the University of Adelaide, the probe may help researchers find better treatments to prevent drug-induced overheating of the brain, and potentially refine thermal treatment for cancers. Read the media release or click on the publication title below!

Journal: Optics Letters.

Publication title: Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue.

Authors: Jiawen Li, Erik Schartner, Stefan Musolino, Bryden C. Quirk, Rodney W. Kirk, Heike Ebendorff-Heidepriem, and Robert A. McLaughlin.

Abstract: The ability to visualize structure while simultaneously measuring chemical or physical properties of a biological tissue has the potential to improve our understanding of complex biological processes. We report the first miniaturized single-fiber-based imaging+sensing probe capable of simultaneous optical coherence tomography (OCT) imaging and temperature sensing. An OCT lens is fabricated at the distal end of a double-clad fiber, including a thin layer of rare-earth-doped tellurite glass to enable temperature measurements. The high refractive index of the tellurite glass enables a common-path interferometer configuration for OCT, allowing easy exchange of probes for biomedical applications. The simultaneous imaging+sensing capability is demonstrated on rat brains.

Below – Dr Jiawen Li.

Miniprobes innovation featured

20 March 2018:

The CNBP spin-out company Miniprobes and its development of an inexpensive handheld scanner that can undertake microscopic analysis of surfaces has featured as a ‘success story’ as a part of the AUSInnovates campaign.

The handheld imaging device is able to accurately measure the thickness of surface coatings applied to products – often less than a tenth of a millimetre in thickness.

“We’re exploring two major international markets,” explained Dr McLaughlin, Miniprobes Managing Director.

“Our scanheads can examine metal parts in microscopic detail, and that’s important for industrial manufacturers working to fine tolerances, such as in the car and aerospace industries.”

“Another important application is in controlling the absorption rate of drugs, which is achieved by coating the drug with a thin chemical layer. Our device enables precise measurement of these layers by pharmaceutical manufacturers.”

The AUSinnovates campaign celebrates successful Australian commercialisation and is championed by gemaker, research-industry engagement and commercialisation specialists.

Detecting hydrogen peroxide

19 March 2018:

A nanosensor that can detect hydrogen peroxide has been developed by CNBP/IPAS researchers by combining fluorescent nanodiamonds with organic fluorescent probes.

Importantly, cellular imbalance of hydrogen peroxide has been connected to aging and various severe diseases, including cancer, cardiovascular disorders, and Alzheimer’s.

The work is featured in the latest edition of MRS Bulletin with Patrick Capon from the University of Adelaide, co-author of the research study interviewed for the article (available here).