Category Archives: RMIT

Synthesis of optical spectra

3 April 2017:

A new publication from CNBP researchers (lead author Dr Ivan Maksymov pictured)  demonstrates a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology.

The work has just been reported in the journal ‘Optics Express’ and is accessible online.

Journal: Optics Express.

Title: Synthesis of discrete phase-coherent optical spectra from nonlinear ultrasound.

Authors: Ivan S. Maksymov and Andrew D. Greentree.

Abstract: Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology. The synthesised spectra consist of a set of equally spaced optical Brillouin light scattering modes having a well-defined phase relationship between each other. We suggest that these spectra may be employed as optical frequency combs whose spectral composition may be tuned by controlling the nonlinear acoustic interactions.

VC PhD scholarship awarded

23 March 2017:

Emma Wilson from the RMIT University node of the Centre for Nanoscale BioPhotonics has recently had her scholarship upgraded to a Vice-Chancellor’s PhD Scholarship which is the most prestigious scholarship available at RMIT.

These scholarships are awarded on the basis of academic excellence and research potential.

Emma will be studying how the surface properties of nanodiamonds effect their fluorescent emission for applications in neuronal (pain-related) biological research.

Microscopy meet ‘big data’

22 March 2017:

Cell Systems has published an invited preview article authored by CNBP Research Fellow Dr Antony Orth along with collaborators from Harvard University and Massachussetts General Hospital.

The commentary article discusses how data-driven methods are poised to shake-up how we approach bio-microscopy. Microscopy-based assays can be made more informative and more predictive when paired with a library of reference images. The preview puts new results in this field into context and suggests further avenues of research.

The article is accessible online although a subscription is required.

 

Dictionary-enhanced imaging cytometry

22 February 2017:

A new paper by CNBP researcher Tony Orth (lead author pictured) describes how to use large image sets to perform cell classification and imaging performance. The work combines years of hardware development on a high throughput microlens microscope together with large scale image processing.

The authors on the paper found that they could get a computer to accurately identify white blood cells types purely from a reference set of images (or dictionary), without resorting to time-consuming manual classification by trained staff.

Moreover, the authors demonstrated that because white blood cells come in a limited number of shapes and sizes, even a very poor quality noisy image of a white blood cell can be effectively enhanced by looking for similar images in the dictionary set.

This has potential applications for low-light level imaging. Working with a small amount of light is detrimental in terms of image quality but gentle on cells. The author’s dictionary-based method provides a way to partially recover image quality for dose-limited imaging.

The paper is accessible online.

Dictionary-enhanced imaging cytometry. Antony Orth, Diane Schaak and Ethan Schonbrun. Scientific Reports 7, Article number: 43148 (2017).

Science ‘Experience Day’ at RMIT

18 January 2017:

Researchers at CNBP’s RMIT University node were busy doing light-based demonstrations on Wednesday Jan 18th, as part of the ‘RMIT University Experience Day’ program, whereby students from years 10, 11 and 12 get to engage in hands-on workshops and explore life on campus while experiencing the differing aspects of University discipline areas.

As part of the ‘experience’ activity, over seventy high school students (predominantly in Year 10) visited the CNBP researchers in their physics laboratories. While there, students were given an overview of biophotonic science as well as laboratory research, and shown the exciting things that can be done with light including 3D scanning, fluorescence microscopy and more.

Below – CNBP researcher Philipp Reineck talks and demonstrates photonics to students.

 

 

 

New PhD student at RMIT Uni node

16 December 2016:

CNBP’s RMIT University node welcomes new PhD student Maria Javaid to the team.

Maria has a MPhil from the University of Sargodha, Pakistan and her background is in exploring the transport properties of graphene.

Here Maria will be searching for new fluorescent biomarkers based on 2d materials. She will be supervised by CNBP Chief Investigator Andy Greentree and CNBP Research Fellow Daniel Drumm.

A big CNBP welcome to you Maria!

New paper in ‘Nanoscale’

Low Res Edit 01065 December 2016:

A new publication from CNBP researchers (lead author Philipp Reineck pictured) demonstrates bright and photostable fluorescence from nitrogen-vacancy centers in unprocessed nanodiamond particle aggregates. The work has just been reported in the journal ‘Nanoscale’ and is accessible online.

Journal: Nanoscale.

Title: Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

Authors: P. Reineck, M. Capelli, D. W. M. Lau, J. Jeske, M. R. Field, T. Ohshim, A. D. Greentree and B. C. Gibson.

Abstract: Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent
nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for
the production of fluorescent NV nanodiamonds for use in bioimaging applications.

Near-infrared fluorescent nanomaterials

Low Res Edit 010628 October 2016:

CNBP researchers Philipp Reineck (pictured left) and A/Prof Brant Gibson explore recent advances in the development and use of near-infrared fluorescent nanomaterials for biomedical imaging and sensing applications in this just released review paper.

Journal: Advanced Optical Materials

Title: Near-Infrared Fluorescent Nanomaterials for Bioimaging and Sensing

Authors: Philipp Reineck and Brant Cameron Gibson

Abstract: A great challenge in noninvasive biomedical imaging is the acquisition of
images inside a biological system at the cellular level. Common modalities used today
such as magnetic resonance or computed tomography imaging have the advantage that
any part of a living organism can be imaged at any depth, but are limited to millimeter
resolution and can usually not be employed e.g., for surgical guidance. Optical imaging
techniques offer resolution on the 100 nanometer scale, but are limited by the strong
attenuation of visible light by biological matter and are traditionally used to image on the
surface. Near-infrared light in the “biological windows” can penetrate much deeper into
biological samples, rendering fluorescence-based imaging a viable alternative. In the past
two decades, many fluorescent nanomaterials have been developed to operate in the near
infrared, yet only few materials emitting above 1000 nm exist and none are approved for
clinical use. This review describes recent advances in the development and use of nearinfrared fluorescent nanomaterials for biomedical imaging and sensing applications. The physical and chemical properties as well as the bioconjugation and application of materials such as organic fluorophores, semiconductor quantum dots, carbon-based materials, rare earth materials, and polymer particles are discussed.

The paper is accessible online.

 

 

Researchers light-up festival

OLYMPUS DIGITAL CAMERA10 September 2016:

Researchers from the RMIT University node of the Centre for Nanoscale BioPhotonics (CNBP) were out in force to support this year’s AstroLight Festival at Scienceworks, Melbourne, undertaking a wide variety of talks, displays, hands-on activities and demonstrations that entertained and educating over 2000 excited members of the public.

From talks encompassing laser combat in the movies (and how lasers work in real life), to the natural ‘glow-sticks’ found in the living environment, to astronomy at the nanoscale, the CNBP-RMIT team had a blast, in taking their passion for lasers, optics, fluorescence, and all things ‘light-based’ and molecular out to the wider community.

From an evening of highlights, brought together by professional researchers, industry bodies, science communicators and community science groups (and over 250 volunteers), there were amazing wonders of astronomy, light and science to be seen at AstroLight 2016. Not least, a cutting edge fluorescence microscope brought to the event by CNBP that allowed attendees to view the amazing biology that makes up cells, to a scanner that could take 3D images of objects in real-time, to colourful laser based activities that demonstrated just how light waves work.

A/Prof Brant Gibson, CNBP node leader at RMIT University saw the festival as a huge success. “All of the contributors and organisations came together to share their knowledge and expertise and there was plenty of fun and engaging activities for individuals of all ages to participate in.”

Gibson was particularly happy with the way in which the CNBP-RMIT researchers came together to support the event. “They worked tirelessly in producing suitable talks and demonstrations as there was a real desire to showcase our science in the most appealing and engaging way possible. The large numbers of people at our stand and in our CNBP demonstration rooms, all curious about biophotonics, was testament to the effort, energy and enthusiasm shown by our team in making this event so memorable.”

Gibson also commented on the importance of taking science out to the community. “It’s critical that we communicate the fantastic research that we are doing, and that we do it in a way that makes it real and important to the general public and that they can see how it impacts on their everyday lives. Of course, making it fun and exciting as well, is the perfect way to showcase what we do which is why AstroLight is such an outstanding festival.”

Inspiring the next generation of potential researchers was also a key objective to participating. “We really want to encourage an interest in, and continued learning in STEM subjects that will foster future innovation,” said Gibson. “Hopefully some of the children wowed by our lasers and talks will be doing my job in twenty-five years time. Wouldn’t that be great!”

Below – CNBP researcher Emma Wilson demonstrates use of a fluorescence microscope.

OLYMPUS DIGITAL CAMERA