Category Archives: RMIT

ECR Award goes to Dr Philipp Reineck

14 February 2019:

Congratulations to CNBP Associate Investigator Dr Philipp Reineck (RMIT VC Research Fellow), who has been awarded an RMIT University School of Science ‘Early Career Researcher Award’ for his outstanding research outputs and achievements in 2018.

Recognized was Philipp’s publication output. This included ten papers (with three  officially published in 2019). Also his four invited talks given at international conferences in the USA, Europe and Australia, together with his successful funding from the Australian Synchrotron to do 3D bioimaging experiments at the Spanish synchrotron.

A fantastic effort Philipp!

Below – Dr Philipp Reineck receiving his award.


Fraunhofer IAF visit

29 January 2019:

CNBP PhD student, Marco Capelli (RMIT) has recently undertaken a three month residency at the Fraunhofer IAF (Institute for Applied Solid State Physics) in Freiburg, Germany.  He reports on his work and collaborative activity there, focused on furthering the measurement of magnetic fields with diamond crystals.

During the months from October to December I worked with the group of Diamond Magnetometry at the Fraunhofer IAF (Institute for Applied Solid State Physics) in Freiburg, Germany.

The group leader Dr. Jan Jeske already collaborated with the CNBP in the past. His group is developing a new technique, building a laser from the fluorescence of diamond and using the enhanced signal to develop a more compact and less expensive diamond device able to perform magnetoencephalography (MEG) with high resolution and sensitivity.

At the Fraunhofer IAF I worked on our common goal of pushing further the ability of measuring magnetic fields with diamond crystals. It was a full collaborative work that put together my knowledge about magnetometry, helping optimising their existing setups and experimental procedures, with their ability to grow diamond samples with specific and tailored characteristics, searching for the best diamond to use.

I was able to compare the sample I previously used in my studies with their diamond samples and study how they differ and which are the best suited for magnetometry. This comparison is still at the beginning and our groups will further collaborate in the near future to get a full understanding of the diamond material.

The work helped me learn and better understand how diamonds can be created, how much they can be ‘customised’ and which parameters to keep in mind when choosing the appropriate diamond to use in my experiments. The students and researchers I met were keen to share their expertise and show me their advanced facilities to grow diamond. In addition it was a great learning experience to work at the institute itself. As the institute is more focused with practical applications and connecting with industry, it was personally interesting to see the differing kinds of management and organisational structures in place there.

Below: Marco (third left) with the  Diamond Magnetometry team.

Not all fluorescent nanodiamonds are created equal

28 January 2019:

Hundreds of individual tiny fluorescent diamond particles have been imaged and characterized by CNBP researchers, reported in the journal ‘Particle & Particle Systems Characterization’.

Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics.

The study identifies opportunities to improve the properties of single fluorescent nanodiamonds, to develop a better understanding of their underlying physical mechanisms and to advance current nanofabrication technologies.

Lead author on the paper is CNBP Associate Investigator Dr Philipp Reineck at RMIT University.

Journal: Particle & Particle Systems Characterization.

Publication title:  Not All Fluorescent Nanodiamonds Are Created Equal: A Comparative Study.

Authors: Philipp Reineck; Leevan Fremiot Trindade, Jan Havlik, Jan Stursa, Ashleigh Heffernan, Aaron Elbourne, Antony Orth, Marco Capelli, Petr Cigler, David A. Simpson, Brant C. Gibson.

Abstract: Fluorescent nanodiamonds (FNDs) are vital to many emerging nanotechnological applications, from bioimaging and sensing to quantum nanophotonics. Yet, understanding and engineering the properties of fluorescent defects in nanodiamonds remain challenging. The most comprehensive study to date is presented, of the optical and physical properties of five different nanodiamond samples, in which fluorescent nitrogen‐vacancy (NV) centers are created using different fabrication techniques. The FNDs’ fluorescence spectra, lifetime, and spin relaxation time (T1) are investigated via single‐particle confocal fluorescence microscopy and in ensemble measurements in solution (T1 excepted). Particle sizes and shapes are determined using scanning electron microscopy and correlated with the optical results. Statistical tests are used to explore correlations between the properties of individual particles and also analyze average results to directly compare different fabrication techniques. Spectral unmixing is used to quantify the relative NV charge‐state (NV− and NV0) contributions to the overall fluorescence. A strong variation is found and quantified in the properties of individual particles within all analyzed samples and significant differences between the different particle types. This study is an important contribution toward understanding the properties of NV centers in nanodiamonds. It motivates new approaches to the improved engineering of NV‐containing nanodiamonds for future applications.

CNBP presents at IETS Conference

23 January 2019:

Prof Brant Gibson and Prof Jeremy Thompson (both CNBP Chief Investigators) have attended (and presented) at the  International Embryo Technology Society (IETS) conference held in New Orleans, January 20– 23, 2019.

A lunch presentation session sponsored by CNBP, provided both representatives with the opportunity to talk about CNBP as well as to provide information on the organisation’s latest research and activity, taking place in the imaging and reproduction spaces.

Areas covered included: research on improving in vitro embryo production (IVF) systems; the development of a purpose-built, multi-function, micron-scale embryo ‘housing’ device created via unique 3D-printing technology; discussion on advanced hyperspectral imaging techniques; and the development by CNBP researchers of a clip-on device to enhance the magnification of a mobile phone’s existing optics, enabling bull semen analysis.

“The CNBP presentation went even better than I was expecting and we had over 40 people in attendance,” said Prof Gibson.

“Everyone enjoyed the lunch and there were plenty of questions and discussion from key people in the field, during and after our presentations. ”

“Hopefully this will spark some future collaborations both from a research and translation point of view,” Prof Gibson concluded.

The IETS Conference is the preeminent meeting in animal biotechnology, covering a broad area from embryo production and transfer techniques to cloning and transgenesis. The conference attracted more than 600 attendees from all over the world.

Below: A/Prof Jeremy Thompson discusses use of photonic probes in the reproduction space.

Super-resolution volumetric imaging

11 December 2018:

The Australian Research Council (ARC) has announced funding for a super-resolution imaging facility that will be the first of its kind in Australia.

The facility brings together a consortium of multidisciplinary researchers from leading Australian Universities, Institutes and Research Centres (including CNBP) to develop new capacities for materials science, photonics devices, engineering, and neuroscience, microbial and cardiovascular research.

At its core the A$3.0m ARC LIEF project will enable scientists to study the inner workings of cells in their native environment. This represents a step change from currently imaging isolated 2D cells cultured in a petri dish to future research that will reveal subcellular structures and cell-to-cell communications in 3D tissue in real time.

The National Volumetric Imaging Platform, as it is known, will be installed, maintained and operated by the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) and the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at RMIT University in Melbourne. This project is scheduled to be completed in late 2019.

UTS Professor Dayong Jin, Lead Chief Investigator of the project, said that the facility will give scientists a “new way to decode the complexities of life science machinery.”

“High-resolution imaging of the large volume of single cells and functional navigation of their interactions will allow researchers to drop into a ‘street view’ and observe the details of intercellular ‘live traffic’,” he said.

Prof Brant Gibson, Co-Deputy Director and RMIT node director of CNBP said, “I am very excited to lead the RMIT University node of the National Volumetric Imaging Facility and to work in collaboration with Jin Dayong, the UTS node and all of our collaborative institutional partners. This facility will enable us to image deeper within biological samples than we ever been able to before, with nanoscale resolution and extraordinary bandwidth stretching from the near-UV (400nm) well into the infrared (1650nm) spectrum.”

Prof Mark Hutchison, Professor at the Adelaide Medical School and Director of the CNBP at the University of Adelaide said, “This is an exciting development of advanced imaging infrastructure capacity that will allow a convergence of scientists from across the country to gain an unprecedented level of molecular insights into the complex systems and arrangement of cells in biologically relevant complex 3 dimensional environments.”

Participating Organisations include: Universities: University of Technology Sydney, RMIT University, University of Wollongong, University of Sydney, The University of Queensland, The University of New South Wales, Macquarie University, The University of Adelaide.

Institutes and Centres: Institute for Biomedical and Materials Devices, ARC Research Hub for Integrated Device for End-user Analysis at Low-levels, Institute for Molecular Horizons, the Heart Research Institute, ithree Institute, Centre for Translational Neuroscience, Australian Centre for Ecogenomics, ARC Centre of Excellence for Nanoscale BioPhotonics.


Optimising the creation of NV centres in diamond

24 November 2018:

An improved method to convert nitrogen to nitrogen-vacancy (NV) color centers in diamond has been reported by CNBP researchers in a paper published in the journal Carbon. Lead author of the paper was CNBP student Marco Capelli (pictured).

Journal: Carbon.

Publication title: Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature.

Authors: M. Capelli, A.H. Heffernan, T. Ohshima, H. Abe, J. Jeske, A. Hope, A.D. Greentree, P. Reineck, B.C. Gibson.

Abstract: The nitrogen-vacancy (NV) centre is a fluorescent defect in diamond that is of critical importance for applications from ensemble sensing to biolabelling. Hence, understanding and optimising the creation of NV centres in diamond is vital for technological progress in these areas. We demonstrate that simultaneous
electron irradiation and annealing of a high-pressure high-temperature diamond sample increases the NV centre creation efficiency from substitutional nitrogen defects by up to 117 % with respect to a sample where the processes are carried out consecutively, but using the same process parameters. This increase in fluorescence is supported by visible and infrared absorption spectroscopy experiments. Our results pave the way for a more efficient creation of NV centres in diamond as well as higher overall NV densities in the future.

QST partner launch

15 October 2018:

The ‘National Institutes for Quantum and Radiological Science and Technology (QST)’ has been announced as a partner organisation of the CNBP at an official launch event held in Japan, October 15th, 2018.

The QST, a merger of the National Institute of Radiological Sciences (NIRS) with operations that were previously undertaken by the Japan Atomic Energy Agency (JAEA), undertakes research and development into quantum science and technology, the effect of radiation on humans, radiation emergency medicine, and the medical use of radiation.

“The QST / CNBP partner launch was a huge success,” said CNBP Deputy Director A/Prof Brant Gibson, RMIT University.

“Our partner launch activities occurred over two site locations  of the QST – Takasaki and Chiba, Japan.”

“At the Takasaki ‘materials’ site I presented the CNBP partner plaque to Hisayoshi Itoh (pictured top left), Director General of the Takasaki site (Takasaki Advanced Radiation Research Institute).”

“Our delegation then moved to the Chiba ‘medical’ site of QST (National Institute of Radiological Sciences). There they have a medical high energy carbon irradiation facility – of which there are only two existent globally – the other is in Heidelberg in Germany. We had the opportunity to meet with Yoshiya Shimada, Executive Director of the entire QST at the Chiba site where I presented the CNBP plaque a second time,” he said.

The CNBP / QST partnership launch coincided with the launch of a 3 year International Research Initiative (entitled Quantum biosensors in wide bandgap semiconductors) between QST and researchers from RMIT, CNBP, The University of Melbourne, CQC2T and the Fraunhofer IAF.

“This initiative will focus on fostering strategic collaboration between Japan, Australia and Germany through short to long term visits from researchers focused in the area of quantum biology,” said A/Prof Gibson.

Below – A/Prof Brant Gibson with Yoshiya Shimada, Executive Director of the QST.

Below – QST and CNBP delegates pose for a partner launch photo at the QST Chiba site.

Strong microwave photon-magnon coupling in multiresonant dielectric antennas

9 October 2018:

A new perspectives paper by CNBP researcher Dr Ivan Maksymov, RMIT University discusses dielectric resonant systems and demonstrates their ability to operate as multiresonant antennas for light, microwaves, magnons, sound, vibrations and heat.

Journal: Journal of Applied Physics.

Publication title: Perspective: Strong microwave photon-magnon coupling in multiresonant dielectric antennas.

Author: Ivan S. Maksymov.

Abstract: Achieving quantum-level control over electromagnetic waves, magnetisation dynamics, vibrations, and heat is invaluable for many practical applications and possible by exploiting the strong radiation-matter coupling. Most of the modern strong microwave photon-magnon coupling developments rely on the integration of metal-based microwave resonators with a magnetic material. However, it has recently been realised that all-dielectric resonators made of or containing magneto-insulating materials can operate as a standalone strongly coupled system characterised by low dissipation losses and strong local microwave field enhancement. Here, after a brief overview of recent developments in the field, I discuss examples of such dielectric resonant systems and demonstrate their ability to operate as multiresonant antennas for light, microwaves, magnons, sound, vibrations, and heat. This multiphysics behavior opens up novel opportunities for the realisation of multiresonant coupling such as, for example, photon-magnon-phonon coupling. I also propose several novel systems in which strong photon-magnon coupling in dielectric antennas and similar structures is expected to extend the capability of existing devices or may provide an entirely new functionality. Examples of such systems include novel magnetofluidic devices, high-power microwave power generators, and hybrid devices exploiting the unique properties of electrical solitons.

Lighting up AstroLight 2018

8 September, 2018:

It was a fantastic evening of outreach by the CNBP-RMIT team at the annual AstroLight Festival, at Scienceworks in Melbourne, 8th September, 2018.

A wide range of demonstrations, talks and hands-on activities from volunteers from Observatories, Universities and Research Centres brought science to life to over 600 members of the public at this annual astronomy and optics event.

CNBP highlights included public talks from Center Chief Investigator Prof Andrew Greentree (The wonders and delights of bees and how they see colour) and Centre Associate Investigator Dr Kate Fox (Fluorescent Implants: 3D printing for the future).

Also  popular was the CNBP interactive stall where there was a number of light based giveaways as well as a room of CNBP light experiments showcasing the properties of lasers, fluorescence, imaging and more.

“Taking science to the public is always extremely satisfying,” said CNBP Node Leader at RMIT University, A/Prof Brant Gibson.

“It’s great to be able to excite and enthuse people about what we do and to explain the relevance that science has in our community more generally.”

“The team came together with a huge amount of energy and positivity which helped make the evening a great success!”

Below – Big smiles from the CNBP-RMIT team at AstroLight 2018!

New CNBP researcher at RMIT

16 August 2018:

CNBP welcomes its newest recruit at RMIT University, Dr Amanda Abraham.

She will work with A/Prof Brant Gibson, CNBP Deputy Director and his team, where she will utilise her expertise to explore the biological applications of fluorescent nanomaterials including nanodiamonds, as well as collaborate across the wider CNBP community.

Amanda completed her PhD at RMIT University where she studied the long-term effects of phytochemical coated silver nanoparticles on mammalian cells. She was awarded the Prof CNR Rao Postgraduate Research Excellence Award for her PhD research. This award is given to an RMIT Graduate Sstudent for outstanding contributions in the application of Nanotechnology.

She has also worked as a post-doctoral researcher with Prof. Vipul Bansal, Director of the Sir Ian Potter NanoBioSensing Facility at RMIT University, where she investigated the wound healing capabilities of silver nanoparticle coated fabrics for use as wound dressings.

Her expertise includes mammalian cell culture, confocal microscopy, flow cytometry, protein quantification, assessing gene expression and nanoparticle characterisation.

Welcome to the CNBP team Amanda!