Category Archives: MQ

Neurophotonics Summer School

21 June 2017:

This years Neurophotonics Summer School held in Quebec, Canada, June 11-21, was attended by three CNBP members – Vicky Staikopoulos (University of Adelaide, pictured), Antony Orth (RMIT University) and Varun Sreenivasan (UNSW).

The school focuses on teaching physics and biology and how they can merge, and runs for 10 days and includes 14 lectures from world class speakers and 10 workshops that teach the latest technology in the bio-imaging of the central nervous system.

For the last 4 days of the summer school, students are given a project to participate in for direct hands-on experience which is then presented on the last day,  with prizes awarded for the top 3 presentations.

This year, equal second prize was given to Vicky Staikopoulos for her work on Digital Holographic Microscopy in red blood cells.

 

School science conference impresses

15 June 2017:

Dr Nima Sayyadi, CNBP researcher, has undertaken guest judging duties at the 2017 Sydney Girls High School Science Conference.

Each year students at Sydney Girls High School complete a research project as part of the NSW Science Curriculum. This project provides Year 9 students with an opportunity to design and perform an investigation into an area of their choice. The annual Science Conference then gives the students a forum where they can present their research to an expert panel.

The panel not only provides students with feedback relating to their investigation, but also determines the projects worthy of further recognition. The determination considers both experimental design and the ability of the student to communicate their ideas.

According to Nima, the standard of work on display was of an incredibly high standard.

“The way that the young students designed their research projects – the hypotheses and preparation and understanding of data limitations was generally quite remarkable.”

Projects being showcased included DNA extraction from fruits with limited facilities through to the analysis of the plastic waste found in water on different beaches in Sydney.

“It was a great experience for me to meet the students, teachers, and other judges from different universities at this event,” concluded Nima.

“Hopefully the passion that these students show for science continues through High School and into tertiary education and beyond.”

Centre represented at Glycoinformatics Symposium

13 June 2017:

CNBP Chief Investigator Prof Nicki Packer has attended the Beilstein Glycoinformatics Symposium, Berlin, Germany, 13-15th June 2017.

Prof Packer was an invited speaker, session chair and sat on a discussion panel, with her attendance fully funded by the conference organisers.

Prof Packer’s talk was titled, “Technology Shapes Glycoinformatics.”

 

Outreach fun linked to science

10 June 2017:

Dr Martin Ploschner, CNBP Researcher, has taken his outreach skills to the Czech and Slovak School, Sydney where he performed several hands-on science shows for approximately 100 students, all aged 10 and under.

The show connected fun light-based activities with CNBP science and included the creation of gigantic fluorescent bubbles as well as the use of fluorescent screens that were able to be used as canvas that could be ‘painted on’ with light.

“I had a great time at the school and the activities were very well received,” says Martin.

“The younger kids had fun and the older children asked a lot of questions about the science behind the show. As an added bonus, I was invited back for further school open days as well!”

New Diamond and Nano Carbons conference

1 June 2017:

CNBP was well represented at the 11th International Conference on New Diamond and Nano Carbons, held in Cairns, Australia, 28th May – June 1, 2017.

CNBP Chief Investigator A/Prof Brant Gibson was Co-chair of the conference (pictured) with CNBP researcher Dr Philipp Reineck a contributing speaker, presenting on ‘Bright and photostable nitrogen‐vacancy fluorescence from unprocessed detonation nanodiamonds’.

Also providing a contributing talk was CNBP’s Dr Lindsay Parker, ‘Applications of fluorescent nanodiamonds in cellular molecular tracing.’

Additionally,  CNBP’s Andrew Greentree, Ivan Maksymov, Daniel Drumm, Ashleigh Heffernan, Marco Capelli, Nicole Cordina and Emma Wilson gave poster presentations and Brooke Bacon and Desmond Lau provided administrative and technical support respectively.

The conference spanned research topics from fundamental physical and chemical concepts to applied technologically driven applications with carbon based materials. This including single crystal diamond, nanodiamonds, carbon nanotubes, graphene and other carbon nanostructures.

China visit by Centre researcher

16 May 2017:

On a recent trip to China, CNBP Research Fellow A/Prof Guozhen Liu undertook a number of visits and talks, discussing her advanced sensing, nano-particle and bio-imaging work. This included:

5 May-8 May: Attendance at the International Congress on Analytical Sciences 2017 (ICAS2017) at Kaikou, China. Here Guozhen gave an oral presentation with the title “Engineering reduced graphen oxides towards a label-free electrochemical immunosensor for detection of tumor necrosis factor-alpha.”

11 May: Guozhen gave an invited talk titled, “Nanotools for cytokine monitoring in neuroscience” at Prof Zhihong Zhang’s research team at Huazhong University of Science and Technology, Wuhan. Prof Zhang is one of CNBP’s Partner Investigators at HUST.

13-14 May: Guozhen provided a keynote speech, titled, “An optical fibre based ex-vivo device for detection of cytokines” at the 2nd International Congress on Biomedical Imaging and Signal Processing (ICBISP 2017) at Wuhan.

Below: A/Prof Guozhen Liu (right) visiting CNBP Partner Investigator Prof Zhihong Zhang.

 

Maximizing particle concentration

28 April 2017:

A new paper from CNBP researchers reports on an improvement to deterministic lateral displacement arrays, which allows for higher particle concentration enhancement. The work has just been published in the journal ‘Biomicrofluidics’ and is accessible online.

Journal: Biomicrofluidics.

Title: Maximizing particle concentration in deterministic lateral displacement arrays.

Authors: Shilun Feng, Alison M. Skelley, Ayad G. Anwer (pictured top left), Guozhen Liu and David W. Inglis.

Abstract: We present an improvement to deterministic lateral displacement arrays, which allows higher particle concentration enhancement. We correct and extend previous equations to a mirror-symmetric boundary. This approach allows particles to be concentrated into a central channel, no wider than the surrounding gaps, thereby maximizing the particle enrichment. The resulting flow patterns were, for the first time, experimentally measured. The performance of the device with hard micro-spheres and cells was investigated. The observed flow patterns show important differences from our model and from an ideal pattern. The 18 μm gap device showed 11-fold enrichment of 7 μm particles and nearly perfect enrichment—of more than 50-fold—for 10 μm particles and Jurkat cells. This work shows a clear path to achieve higher-than-ever particle concentration enhancement in a deterministic microfluidic separation system.

 

New nanoparticle discovery to aid super-resolution imaging

Prof Jim Piper26 April 2017:

Researchers at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, the University of Technology Sydney (UTS), Peking University and Shanghai Jiao-tong University have made a breakthrough in the development of practical super-resolution optical microscopy that will pave the way for the detailed study of live cells and organisms, on a scale 10 times smaller than can currently be achieved with conventional microscopy.

Reported in Nature, the international team of researchers has demonstrated that bright luminescent nanoparticles can be switched on and off using a low-power infrared laser beam, and used to achieve images with a super resolution of 28nm.

Professor Jim Piper (pictured), leader of the research team at Macquarie University and the CNBP sees these nanoparticles as having new unique properties. “These allow researchers to see well beyond normal limits of standard microscopes. It will let you see deeper and more clearly at the cellular and intra- cellular level—where proteins, antibodies and enzymes ultimately run the machinery of life.”

The research featured in BioPhotonics World.

Light-triggerable liposomes

21 April 2017:

A new paper from CNBP researchers (lead author Wenjie Chen pictured) reports on the design of a new light-triggerable liposome. The work has just been published in the journal ‘Molecular Therapy: Nucleic Acid’ and is accessible online.

Journal: Molecular Therapy: Nucleic Acid.

Title: Light-triggerable liposomes for enhanced endo/lysosomal escape and gene silencing in PC12 cells.

Authors: Wenjie Chen, Wei Deng, Ewa M. Goldys.

Abstract: Liposomes are an effective gene/drug delivery system, widely used in biomedical applications including gene therapy and chemotherapy. Here we designed a photo-responsive liposome (lipVP) loaded with a photosensitizer verteporfin (VP). This photosensitizer is clinically approved for photodynamic therapy (PDT). LipVP was employed as a DNA carrier for pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor 1 (PAC1R) gene knockdown in PC12 cells. This has been done by incorporating PAC1R antisense oligonucleotides inside the lipVP cavity. Cells which have taken up the lipVP were exposed to light from a UV light source. As a result of this exposure, reactive oxygen species (ROS) were generated from VP, destabilising the endo/lysosomal membranes and enhancing the liposomal release of antisense DNA into the cytoplasm. Endo/lysosomal escape of DNA was documented at different time points based on quantitative analysis of colocalization between fluorescently labelled DNA and endo/lysosomes. The released antisense oligonucleotides were found to silence PAC1R mRNA. The efficiency of this photo-induced gene silencing was demonstrated by a 74 ± 5% decrease in PAC1R fluorescence intensity. Following the light-induced DNA transfer into cells, cell differentiation with exposure to two kinds of PACAP peptides was observed to determine the cell phenotypic change after PAC1R gene knockdown.