Category Archives: MQ

Super-resolution volumetric imaging

11 December 2018:

The Australian Research Council (ARC) has announced funding for a super-resolution imaging facility that will be the first of its kind in Australia.

The facility brings together a consortium of multidisciplinary researchers from leading Australian Universities, Institutes and Research Centres (including CNBP) to develop new capacities for materials science, photonics devices, engineering, and neuroscience, microbial and cardiovascular research.

At its core the A$3.0m ARC LIEF project will enable scientists to study the inner workings of cells in their native environment. This represents a step change from currently imaging isolated 2D cells cultured in a petri dish to future research that will reveal subcellular structures and cell-to-cell communications in 3D tissue in real time.

The National Volumetric Imaging Platform, as it is known, will be installed, maintained and operated by the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) and the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at RMIT University in Melbourne. This project is scheduled to be completed in late 2019.

UTS Professor Dayong Jin, Lead Chief Investigator of the project, said that the facility will give scientists a “new way to decode the complexities of life science machinery.”

“High-resolution imaging of the large volume of single cells and functional navigation of their interactions will allow researchers to drop into a ‘street view’ and observe the details of intercellular ‘live traffic’,” he said.

Prof Brant Gibson, Co-Deputy Director and RMIT node director of CNBP said, “I am very excited to lead the RMIT University node of the National Volumetric Imaging Facility and to work in collaboration with Jin Dayong, the UTS node and all of our collaborative institutional partners. This facility will enable us to image deeper within biological samples than we ever been able to before, with nanoscale resolution and extraordinary bandwidth stretching from the near-UV (400nm) well into the infrared (1650nm) spectrum.”

Prof Mark Hutchison, Professor at the Adelaide Medical School and Director of the CNBP at the University of Adelaide said, “This is an exciting development of advanced imaging infrastructure capacity that will allow a convergence of scientists from across the country to gain an unprecedented level of molecular insights into the complex systems and arrangement of cells in biologically relevant complex 3 dimensional environments.”

Participating Organisations include: Universities: University of Technology Sydney, RMIT University, University of Wollongong, University of Sydney, The University of Queensland, The University of New South Wales, Macquarie University, The University of Adelaide.

Institutes and Centres: Institute for Biomedical and Materials Devices, ARC Research Hub for Integrated Device for End-user Analysis at Low-levels, Institute for Molecular Horizons, the Heart Research Institute, ithree Institute, Centre for Translational Neuroscience, Australian Centre for Ecogenomics, ARC Centre of Excellence for Nanoscale BioPhotonics.

<ENDS>

Expertise in microfluidic device development!

29 November 2018:

Meet CNBP’s Dr Lianmei Jiang in our latest ‘Quick Chat’ video! She’s developing advanced microfluidic devices for use in cancer diagnosis.

“What I love about science is the more that I learn, the more I realise how little I actually know. Science is a way to turn ‘I don’t know’ into ‘I don’t know yet’,” she says. Click to find out more!

Brain Foundation research gift awarded

30 October 2018:

CNBP Associate Investigators Dr Lyndsey Collins-Praino (University of Adelaide) and Dr Andrew Care (Macquarie University), together with CNBP Director Prof Mark Hutchinson have been awarded a highly competitive Research Gift by the Australian Brain Foundation.

The funds granted will help the team to develop a new technique that aims to prevent the spread of Parkinson’s Disease in the human brain.

Below: Dr Lyndsey Collins-Praino and Dr Care accept their Research Award (with Prof Hutchinson in absentia).

 

 

Medical Innovation Awards success

3 October 2018:

Dr Yiqing Lu, CNBP Associate Investigator at Macquarie University, has  taken out second place in the prestigious Centenary Institute Medical Innovation Awards.

The awards recognise the pursuits of young Australian researchers who are at the forefront of medical research.

For his work in developing a new nanocrystal powered optical imaging technique – to help detect multiple disease biomarkers in the body – Dr Lu received the Bayer Innovation Award and $15,000.

The money will be used to further support Dr Lu’s research in this advanced area of disease detection and diagnosis.

Further information on this innovative imaging technique can be accessed by clicking the following link here.

Below: Dr Yiqing Lu is presented with his award by Matt Kean, Minister for Innovation and Better Regulation (NSW State Government).

Understanding glycome changes in diabetic ovarian tissue

28 August 2018:

This paper describes the characterization of protein glycosylation in the ovary and measures the changes that occur with the induction of diabetes. The lead author on the paper is CNBP PhD student Abdulrahman M Shathili from Macquarie University (pictured).

Journal: Glycobiology.

Publication title: The effect of streptozotocin-induced hyperglycemia on N-and O-linked protein glycosylation in mouse ovary.

Authors: Abdulrahman M Shathili, Hannah M Brown, Arun V Everest-Dass, Tiffany C Y Tan, Lindsay M Parker, Jeremy G Thompson, Nicolle H Packer.

Abstract: Post-translational modification of proteins namely glycosylation influences cellular behavior, structural properties and interactions including during ovarian follicle development and atresia. However, little is known about protein glycosylation changes occurring in diabetes mellitus in ovarian tissues despite the well-known influence of diabetes on the outcome of successful embryo implantation. In our study, the use of PGC chromatography–ESI mass spectrometry in negative ion mode enabled the identification of 138 N-glycans and 6 O-glycans on the proteins of Streptozotocin-induced (STZ) diabetic mouse ovarian tissues (n = 3). Diabetic mouse ovaries exhibited a relative decrease in sialylation, fucosylation and, to a lesser extent, branched N-linked glycan structures, as well as an increase in oligomannose structures on their proteins, compared with nondiabetic mouse ovaries. Changes in N-glycans occurred in the diabetic liver tissue but were more evident in diabetic ovarian tissue of the same mouse, suggesting an organ-specific effect of diabetes mellitus on protein glycosylation. Although at a very low amount, O-GalNAc glycans of mice ovaries were present as core type 1 and core type 2 glycans; with a relative increase in the NeuGc:NeuAc ratio as the most significant difference between control and diabetic ovarian tissues. STZ-treated mice also showed a trend towards an increase in TNF-α and IL1-B inflammatory cytokines, which have previously been shown to influence protein glycosylation.

Profiting from the sugar coating of our cells

18 August 2018:

Shathili Abdulrahman, CNBP PhD Student at Macquarie University has won a prize for his talk ‘Profiting from the sugar coating of our cells: Immunology drugs as a case study’.

The successful talk took place at the ‘Third Saudi Scientific Symposium 2018’ organised by the Saudi Arabian Cultural Mission in Australia and held at the University of Sydney.

The symposium had the theme, ‘Aligning Research with Job Market Expectations‘ and aimed to develop the research of postgraduate candidate’s through networking opportunities with other researchers in the areas of Medical sciences, Engineering, Computer and Applied Social Sciences, and Humanities.

Further Symposium information is accessible online.

Light-based outreach at MQ Open Day

18 August 2018:

Light-based demos ranging from optical fibre lamps, to infinity LED light boxes, to UV light and a fluorescing scorpion were all on show to the general public and potential new students at the CNBP stand at Macquarie University’s Open Day.

At the stand, CNBP researchers took the opportunity to talk-up science and more specifically to explain the field of biophotonics, as well as discuss the value to society that CNBP research provides. Many potential students seemed to be particularly interested in possible career opportunities following a successful under-graduate science degree and were keen to find out more about jobs in the med-tech and general health and diagnosis arena.

In addition to the demonstrations and the informative CNBP science stand, the Centre was also represented at the Open Day science speed dating event. At this session, CNBP laboratory manager Dr Ayad Anwer discussed his science (hyper-spectral imaging work focused on exploring the inner workings of cells), to interested members of the public who had the opportunity to speak directly and in-turn with a room full of MQ University researchers.

Feedback from the Centre team who volunteered for the Open Day was that they had experienced an enjoyable time with many positive interactions, discussing their science and their life as a scientist more generally, to interested and engaged members of the public.

Below – The CNBP team get ready and prepped for Open Day!

 

 

A kids focus at Sydney Science Festival

10 August 2018:

Over one hundred primary school children saw CNBP and Macquarie University researchers Dr Martin Ploschner (pictured) and Dr Annemarie Nadort present fun-filled light-focused science demonstrations at the Australian Museum as a part of National Science Week and the Sydney Science Festival for 2018.

Dr Martin Ploschner demonstrated how every-day items such as soap, detergent, money, and identity documents will glow or fluoresce when UV light is shone on them. Also demonstrated was the ‘glow affect’ from natural organisms such as scorpions, green leaves and bacteria on pistachios.

Dr Annemarie Nadort showed the children how they could see a network of blood vessels in their own tongue with a special microscope camera, facilitating an understanding of the human body and the tools needed to be able to see within it.

“The kids were amazed by seeing the continuous flow of red blood cells in the vessels. They were described as being like ‘in a rollercoaster’ or ‘like little ants walking on paths’, said Dr Nadort.

“It was great to see the excitement and interest from kids as young as six at our stand. Hopefully we managed to play a small role in promoting an ongoing interest in science in these bright and eager minds,” she said.

Below – Dr Annemarie Nadort and Dr Martin Ploschner demonstrate the wonders of science to children at the Australian Museum.

New nanoparticles help detect deep-tissue cancers

6 August 2018:

Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body.

Reported in the science journal ‘Nature Nanotechnology’, the research opens up a new avenue in minimally invasive disease diagnosis and will potentially have widespread use both for biomedical research and for clinical applications.

“The use of nanoparticles for bio-imaging of disease is an exciting and fast-moving area of science,” says research author Dr Yiqing Lu (pictured) at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University.

“Specially designed nanoparticles can be placed in biological samples or injected into specific sites of the body and then ‘excited’ by introduced light such as that from a laser or an optical fibre,” he says.

“Disease biomarkers targeted by these nanoparticles then reveal themselves, by emitting their own specific wavelength signatures which are able to be identified and imaged.”

A major limitation however is that only a single disease biomarker at a time is able to be distinguished and quantified in the body using this type of detection technique.

“Detection of multiple biomarkers (known as multiplexing) in the body has been a major challenge for researchers,” says Dr Lu.

“The tissue environment is extremely complex—full of light absorbing and scattering elements such as blood, muscle and cartilage. And introducing multiple nanoparticles to a site, operating at multiple wavelengths to detect multiple biomarkers, produces too much interference. It makes it extremely difficult to determine accurately if a range of disease biomarkers are present.”

What Dr Lu and the research team have done to solve this issue has been to engineer innovative nanoparticles that emit light at the same frequency (near infrared light) but that are able to be coded to emit light for set periods of time (in the microsecond-to-millisecond time range).

“It is the duration of the light-emission and the biomarker reaction to this timed amount of light (known as luminescence lifetime) that produces a clearly identifiable molecular signature,” he says.

“Multiple disease biomarkers can be clearly identified and imaged based on this approach as there are no overlapping wavelengths interfering with the reading.”

“This enables high-contrast optical biomedical imaging that can detect multiple disease biomarkers all at the one time.” says Dr Lu.

In an exciting breakthrough in laboratory testing, the innovative nanoparticles have been able to detect multiple forms of breast cancer tumours in mice.

“We’re extremely excited where this work is taking us,” says Professor Fan Zhang at Fudan University (China) and joint-lead author on the research publication.

“We were able to successfully detect and identify key biomarkers for a number of different sub-types of breast cancer.”

“This technique has the potential to provide a low-invasive method of determining if breast cancer is present, as well as the form of breast cancer, without the need to take tissue samples via biopsy.”

“Ultimately our novel nanoparticles will enable quantitative assessment for a wide range of disease and cancer biomarkers, all at one time. The technique will be able to be used for early-stage disease screening and potentially utilised in integrated therapy,” says Professor Fan Zhang.

Professor Jim Piper, CNBP node leader at Macquarie University and also an author on the paper is similarly upbeat with the results that have been obtained.

“This is a major advance in a long-term effort at our Centre at Macquarie University to develop innovative techniques for simultaneous detection of multiple disease markers in humans and animals,” he says.

“Next steps in our research collaboration are to further refine the nanoparticles, to examine issues related to a clinical roll-out of the technology and to explore further applications and disease areas where this technique could be best utilised.”

Reported in the prestigious journal ‘Nature Nanotechnology’, the international team of researchers involved with the study are based at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University and Fudan University, China.

Notably, the work is an extension of previous nanoparticle-imaging research undertaken by Dr Lu at Macquarie University which has been awarded a patent in the United States and China, and which has already been licensed with commercial partners.

Journal: Nature Nanotechnology.

Publication title: Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging.

Authors: Yong Fan, Peiyuan Wang, Yiqing Lu, Rui Wang, Lei Zhou, Xianlin Zheng, Xiaomin Li, James A. Piper & Fan Zhang.

Below: A stylised image of cancer detecting nanoparticles in the body. Credit: Yong Fan.

Into the inner unknown

26 July 2018:

Touching on issues as diverse as space science, natural disasters, pollution and extreme biology, Yr 7- 12 high school students had the opportunity to gain insight into humanity’s big issues at a three day Macquarie University outreach event held in association with the organisation ‘One Giant Leap (Australia)’.

As a part of this event activity, CNBP’s Dr Annemarie Nadort undertook two separate outreach presentations to approximately 50 students, explaining the human body, the biology of blood, the physics of light and the potential of non invasive optical clinical technologies that could potentially be applied to humans in space.

“It was great to talk with such enthused students,” said Annemarie. “There were some great questions about how we can image deep inside the body and the many challenges that we face in being able to do so successfully.”

Below – Students are given a demonstration of a clinical micro-circulation imager by Dr Nadort. Using the device, blood cells and vessels under the tongue are able to be seen on the screen.