All posts by Tony Crawshaw

Awards congratulations

28 February, 2018:

Congratulations to the following CNBP students and researchers who were successful at the annual ‘Institute for Photonics and Advanced Sensing (IPAS) Awards’.

  • Jiawen Li (Joint IPAS Best ECR Paper)
  • Team: Patrick Capon, Malcolm Purdey, Benjamin Pullen and Andrew Abell (IPAS Best Transdisciplinary Paper)
  • Kathryn Palasis (Tanya Monro Best Student Oral Presentation)

 

Turn your phone into a microscope

20 February 2018:

Australian researchers from the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) have developed a 3D printable ‘clip-on’ that can turn any smartphone into a fully functional microscope.

“We’ve designed a simple mobile phone microscope that takes advantage of the integrated illumination available with nearly all smartphone cameras,” explains lead developer and CNBP Research Fellow at RMIT University, Dr Antony Orth.

You can read more about this exciting innovation at the leading technology web site Gizmodo.

 

 

Add-on clip turns smartphone into fully operational microscope

19 February 2018:

Australian researchers from the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) have developed a 3D printable ‘clip-on’ that can turn any smartphone into a fully functional microscope.

Reported in the research journal ‘Scientific Reports’, the smartphone microscope is powerful enough to visualise specimens as small as 1/200th of a millimetre, including microscopic organisms, animal and plant cells, blood cells, cell nuclei and more.

The clip-on technology is unique in that it requires no external power or light source to work yet offers high-powered microscopic performance in a robust and mobile handheld package.

And the researchers are making the technology freely available, sharing the 3D printing files publicly so anyone – from scientists to the scientifically curious – can turn their own smartphones into microscopes.

Lead developer and CNBP Research Fellow at RMIT University, Dr Antony Orth (pictured), believes the technology has immense potential as a scientific tool, one that is ideal for use in remote areas and for field-work where larger standalone microscopes are unavailable or impractical.

“We’ve designed a simple mobile phone microscope that takes advantage of the integrated illumination available with nearly all smartphone cameras,” says Dr Orth.

The clip-on has been engineered with internal illumination tunnels that guide light from the camera flash to illuminate the sample from behind. This overcomes issues seen with other microscopy-enabled mobile phone devices says Dr Orth.

“Almost all other phone-based microscopes use externally powered light sources while there’s a perfectly good flash on the phone itself,” he explains. “External LEDs and power sources can make these other systems surprisingly complex, bulky and difficult to assemble.”

“The beauty of our design is that the microscope is useable after one simple assembly step and requires no additional illumination optics, reducing significantly the cost and complexity of assembly. The clip-on is also able to be 3D printed making the device accessible to anyone with basic 3D printing capabilities.”

A further advantage noted by Dr Orth is that the clip-on enables both bright-field and dark-field microscopy techniques to be undertaken. Bright-field microscopy is where a specimen is observed on a bright background. Conversely, dark-field shows the specimen illuminated on a dark background.

“The added dark-field functionality lets us observe samples that are nearly invisible under conventional bright-field operation such as cells in media,” he says. “Having both capabilities in such a small device is extremely beneficial and increases the range of activity that the microscope can be successfully used for.”

Dr Orth believes the potential applications for the smartphone microscope are enormous.

“Our mobile microscope can be used as an inexpensive and portable tool for all types of on-site or remote area monitoring.”

“Water quality, blood samples, environmental observation, early disease detection and diagnosis—these are all areas where our technology can be easily used to good effect.”

Dr Orth sees significant benefit in developing countries for the device.

“Powerful microscopes can be few and far between in some regions,” says Dr Orth. “They’re often only found in larger population centres and not in remote or smaller communities. Yet their use in these areas can be essential—for determining water quality for drinking, through to analysing blood samples for parasites, or for disease diagnosis including malaria.”

To ensure that this technology can be utilised the world over, the files for the 3D printing of the microscope clip-on are being made freely available. They are available for download at the CNBP web site – http://cnbp.org.au/online-tools.

“Ideally, a phone microscope should take advantage of the integrated flash found in nearly every modern mobile, avoiding the need for external lighting and power. It should also be as compact and easy to assemble as possible. It is this design philosophy that inspired us in the development of this add-on clip,” says Dr Orth.

The new phone microscope has already been tested by Dr Orth and his CNBP colleagues in a number of areas, successfully visualizing samples ranging from cell culture, to zooplankton to live cattle semen in support of livestock fertility testing.

Below: Cells being viewed by an add-on clip that turns a smartphone into a fully operational microscope.

CNBP at ‘Science meets Parliament’

15 February 2018:

Four CNBP’ers attended ‘Science meets Parliament (SmP)’, a high profile political engagement STA event held in Canberra, 13-14th February, 2018.

The event gives science, technology, engineering and mathematics professionals the chance to build a profile for their important work in the Parliamentary environment. This includes meeting privately with politicians to discuss areas of research expertise, as well as unique professional development opportunities focused on clarifying competing rationalities of science, politics and public policy.

The four attendees were CNBP Chief Operating Officer Kathy Nicholson, CNBP PhD student Emma Wilson from RMIT University, CNBP researcher Dr Lindsay Parker (representing Macquarie University) and Dr Sanam Mustafa (The University of Adelaide and a Superstar of STEM, Afternoon Chair on Day One of the event).

Feedback from all representatives was extremely positive with all gaining from their SmP experience.

Emma Wilson met with Western Australian Senator Slade Brockman for her Parliamentarian meeting.

“I told him about my work exploring fluorescent nanodiamonds so we can develop them as tiny light beacons to see what is happening inside our cells,” she said.

“I explained that the CNBP has created an environment where I can explore the fundamentals of the material with an application in mind.”

A major highlight for Emma was getting to meet some of her STEM heroes.

“I had a chat with Australian of the Year Professor Michelle Simmons,” she said.

“We discussed gender balance and equity and the importance of having quality mentorship for creating better scientists. We also discussed the inflexibility of institutes when it comes to accommodating people, both men and women, with carer roles.”

CNBP’s Dr Lindsay Parker was enthusiastic about the SmP event too.

“I met with MP Karen Andrews, who has been a member of the House of Representatives since 2010, representing the Division of McPherson in Queensland,” she said.

“Karen is the Assistant Minister for Vocational Education and Skills and also a co-chair of The Parliamentary Friends of Science. I explained to her how small the nanoscale is relative to things such as human hair and bacteria. I also mentioned some of the materials we work with in the Centre such as nanodiamonds, how they are fluorescent and why they are excellent nanoprobes for use in neuro-imaging.”

Lindsay continued, “I sat next to MP Craig Kelly at the Gala dinner – he’s in the House of Representatives for Hughes, New South Wales. I spoke to him about my neuroscience research and how hopefully one day we can better engineer anti-inflammatory drugs to target the correct cells with less side effects during chronic pain and Alzheimer’s. I mentioned how CNBP is an excellent multidisciplinary Centre linking biology, chemistry and physics. He asked questions about how the drugs work and when they would be ready for use in humans.”

Lindsay summed up, “All of the politicians, CEOs and organisation heads at SmP clearly recognised the need to continue to promote and improve opportunities for women in STEM industries. Senator Michaelia Cash gave a particularly inspirational and enthusiastic speech about this at the Gala dinner and I was impressed that both she and my matched MP Karen Andrews were genuinely interested in science research and improving STEM promotion as a great career in Australia.”

Below: CNBP’s Dr Lindsay Parker, COO Kathy Nicholson, Emma Wilson and Dr Sanam Mustafa at ‘Science meets Parliament’.

 

 

 

 

Goldys on ‘Key Thinkers’ panel

8 February 2018:

The ability to develop a holistic and interdisciplinary vision was raised as a key attribute and skill by CNBP Deputy Director Prof Ewa Goldys at today’s ‘Key Thinkers – Key Concepts – Scholarly Gaze’ panel discussion, coordinated by the Faculty of Human Sciences, based at Macquarie University.

The event, consisting of prominent scientific speakers across differing disciplines, looked to better define the process of ‘seeing’ and ‘observation’ within the higher education research environment. Discussed were the use of technologies and techniques to help support advanced scientific theory development as well as best-practice methodology and laboratory experimentation.

Goldys, Professor at UNSW and Adjunct Professor at Macquarie University noted the advantages of having alternate vantage points and expertise from differing disciplines in her imaging, visualisation and cell colour research at the CNBP.

“It is the ability to bring together multiple disciplines and areas  – such as physics, chemistry, biology, medicine and materials science – that allows for the big science and health questions to be explored and then answered,” she said.

Below – Prof Ewa Goldys discussing the way in which she has successfully combined computer analysis with microscopy, to extract highly detailed cellular information that can help distinguish between healthy and diseased cells.

Detonation nanodiamonds to aid bioimaging

6 February 2018:

Tiny 5 nm detonation nanodiamonds glow in different colors and their fluorescence is pH dependent, reports a new paper by CNBP scientists published today in the Nature journal Scientific Reports.

Lead author of the paper Dr Philipp Reineck from RMIT University (Former CNBP Research Fellow and current CNBP Associate Investigator) notes that the research is particulalry exciting as the fluorescence lifetime of the detonation nanodiamonds makes fluorescence lifetime imaging (FLIM) for bioimaging applications feasible.

Journal: Scientific Reports.

Publication title: Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence.

Authors: Philipp Reineck, Desmond W. M. Lau, Emma R. Wilson, Nicholas Nunn, Olga A. Shenderova & Brant C. Gibson.

Abstract: Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles’ absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.

Diabetes and early pregnancy

1 February 2018:

CNBP and Robinson Research Institute researcher Dr Hannah Brown, University of Adelaide is lead author on a newly published paper that looks to understand why pregnancy failure and pregnancy loss occurs in women with diabetes. The paper was published in the Nature journal Scientific Reports.

Publication titlePericonception onset diabetes is associated with embryopathy and fetal growth retardation, reproductive tract hyperglycosylation and impaired immune adaptation to pregnancy.

Authors: Hannah M. Brown, Ella S. Green, Tiffany C. Y. Tan, Macarena B. Gonzalez, Alice R. Rumbold, M. Louise Hull, Robert J. Norman, Nicolle H. Packer, Sarah A. Robertson & Jeremy G. Thompson.

Abstract: Diabetes has been linked with impaired fertility but the underlying mechanisms are not well defined. Here we use a streptozotocin-induced diabetes mouse model to investigate the cellular and biochemical changes in conceptus and maternal tissues that accompany hyperglycaemia. We report that streptozotocin treatment before conception induces profound intra-cellular protein β-O-glycosylation (O-GlcNAc) in the oviduct and uterine epithelium, prominent in early pregnancy. Diabetic mice have impaired blastocyst development and reduced embryo implantation rates, and delayed mid-gestation growth and development. Peri-conception changes are accompanied by increased expression of pro-inflammatory cytokine Trail, and a trend towards increased Il1a, Tnf and Ifng in the uterus, and changes in local T-cell dynamics that skew the adaptive immune response to pregnancy, resulting in 60% fewer anti-inflammatory regulatory T-cells within the uterus-draining lymph nodes. Activation of the heat shock chaperones, a mechanism for stress deflection, was evident in the reproductive tract. Additionally, we show that the embryo exhibits elevated hyper-O-GlcNAcylation of both cytoplasmic and nuclear proteins, associated with activation of DNA damage (ɣH2AX) pathways. These results advance understanding of the impact of peri-conception diabetes, and provide a foundation for designing interventions to support healthy conception without propagation of disease legacy to offspring.

Biological hydrogen peroxide detection

31 January 2018:

Two important sensing architectures for detecting hydrogen peroxide, aryl boronates and benzils, have been compared by CNBP researchers, using novel boron-dipyrromethene (BODIPY) fluorescent probes. Lead author of the publication was Dr Malcolm Purdey (pictured).

Publication titleBiological hydrogen peroxide detection with aryl boronate and benzil BODIPY-based fluorescent probes.

Journal: Sensors and Actuators B: Chemical.

Authors: Malcolm S. Purdey, Hanna J. McLennan, Melanie L. Sutton-McDowall, Daniel W. Drumm, Xiaozhou Zhang, Patrick K. Capon, Sabrina Heng, Jeremy G. Thompson, Andrew D. Abell.

Abstract: The detection of hydrogen peroxide (H2O2) using fluorescent probes is critical to the study of oxidative stress in biological environments. Two important sensing architectures for detecting H2O2, aryl boronates and benzils, are compared here using novel boron-dipyrromethene (BODIPY) fluorescent probes. The aryl boronate PeroxyBODIPY-1 (PB1) and benzil-based nitrobenzoylBODIPY (NbzB) were synthesised from a common BODIPY intermediate in order to compare sensitivity and selectivity to H2O2. The aryl boronate PB1 gives the highest change in fluorescence on reaction with H2O2 while the benzil NbzB exhibits exclusive selectivity for H2O2 over other reactive oxygen species (ROS). Both proved to be cell-permeable, with PB1 being able to detect H2O2 in denuded bovine oocytes. The strengths of these aryl boronate and benzil probes can now be exploited concurrently to elucidate biological mechanisms of H2O2 production and oxidative stress.

New Centre postdoc at Adelaide

31 January 2018:

CNBP welcomes its newest researcher to the team, Dr Thomas Avery who is based at the University of Adelaide.

Thomas was awarded a PhD in chemistry by The University of Adelaide in 2002 and completed post-doctoral positions at The University of Oxford (England) with Dr David Hodgson and The University of Adelaide with Dr Dennis Taylor. During his post-doctoral tenures, he developed a strong publication record in leading organic chemistry journals typically focused on probing the scope, mechanism and application of novel chemical reactions.

Transitioning to industry in 2008, Thomas contributed to new drug development for Adelaide based company Bionomics Ltd, as a Senior Research Scientist in the chemistry division. Bionomics provided him the opportunity to work on a diverse set of projects developing drug candidates in cancer therapeutics and for CNS indications. Most notably, he was chemistry lead for the program that led to the cognition/Alzheimer’s disease collaboration with Merck Sharp and Dohme (MSD) and more recently the pain collaboration, also partnered with MSD.

Thomas has now returned to an academic research role as a CNBP Research Fellow in Professor Andrew Abell’s group.

Building on his medicinal chemistry background he will work on projects to create potential medicaments and biosensors within the Centre. More specifically, his first project is to create Bortezomib-like proteasome inhibitors with improved selectivity and targeted mode of action employing photo-switchable moieties.

A big welcome to the CNBP team Thomas!