Super-resolution method could bring nanoscale microscopy to every lab

Friday 16 August:

CNBP researchers have unlocked the potential to transform microscopy at the nanoscale from a costly, complex option to an everyday laboratory tool, available in every lab.

The technique, described in a paper by lead authors Dr Denitza Denkova and Dr Martin Ploschner, which has been dubbed upconversion super-linear excitation-emission – or uSEE – microscopy, can be used not only for observation but also for the activation of biological structures with super-resolution.

This opens new avenues in optogenetics for precise activation of neurons in the brain or for targeted delivery of drugs with increased sub-cellular precision.

Standard optical microscopes can image cells and bacteria but not their nanoscale features which are blurred by a physical effect called diffraction.

Optical microscopes have evolved over the last two decades in order to bypass this diffraction limit; however, these so-called super-resolution techniques typically require expensive and elaborated instrumentation or imaging procedures.

“We have identified a particular type of fluorescent markers, upconversion nanoparticles, which can enter into a regime where light emitted from the particles grows abruptly – in a super-linear fashion – when increasing the excitation light intensity,” Martin says. “Our key discovery is that if this effect is exploited under the right imaging conditions, any standard scanning optical microscope can spontaneously image with super-resolution.”

The discovery addresses a key challenge for microscopy – the so-called diffraction limit. This prevents optical microscopes from seeing very small features clearly as, when the size and distance between the features start reaching the nanoscale range, they begin to blur together and appear as one.

And that is a problem for biologists to observe nanoscale samples – which is what researchers tackling some of our toughest health challenges need to do all the time.
Little wonder then that accessing the world that lies beyond this diffraction limit has become a holy grail for optical microscopy researchers over the past two decades.

In 2014, the Nobel Prize in Chemistry was awarded to three scientists, who developed three different techniques, capable of tricking physics to overcome the diffraction limit.
This landmark work set the scene for an explosion of so-called super-resolution techniques, which have led to revolutionary discoveries.

So far, however, all of these methods have had significant drawbacks. They are far from user-friendly and require either complicated and costly equipment or elaborated image processing, which often leads to imaging artefacts.

When it comes to 3D imaging, there are even more complications.

All the methods until now also require increasing the illumination power to increase the resolution – but that presents particular problems in the world of biology, where excessive light can harm a fragile specimen.

Denitza’s and Martin’s team took a novel approach to the problem. They wanted to make super-resolution possible on a confocal microscope, without set-up modifications or image processing, so that it would be available for use in any lab at practically no extra cost.

Their key discovery was that they could use a standard scanning optical microscope as a 3D super-resolution machine by imaging “upconversion” nanoparticles, potentially bound to the biological structure being studied. Unlike other super-resolution methods, uSEE microscopy offers better resolution at lower powers, and so minimises the damage to biological samples.

But it is not just the amount of light. Its colour also influences the photo-damage and the resolution. For example, UV- light is more harmful, but since it yields a better resolution, most of the super-resolution methods work in the UV and visible wavelengths.

However, in recent years biologists have become increasingly interested in using near-infrared light. It is less harmful and also allows imaging deeper in the tissue. But it does require a sacrifice in resolution, and the field of super-resolution has a very limited pool of fluorophores and techniques which work in the near-infrared regime.

Conveniently, the upconversion nanoparticles, on which the fluorescent markers employed in uSEE microscopy are based, are excited in the desired near-infrared colour spectrum. They are becoming increasingly popular as biological markers as they offer numerous other advantages for biology, including stable optical performance and possibility for multi-colour imaging.

Numerous papers have been published in the recent years about imaging of such particles for bio-applications. However, the effect of spontaneous super-resolution remains overlooked, mainly because the composition of the particles has not been fine-tuned for this application or the particles were not imaged under suitable conditions.

The CNBP team identified a particular nanoparticle composition which provides a strong improvement of the resolution. To make it easier for the end-user, the researchers developed a theoretical framework to optimise the particles and the imaging parameters for their own laboratory setting.

The concept of this method has been around for decades, and several groups have tried to put it into practice, but they either couldn’t identify fluorescent labels with adequate photo-physics, or the imaging conditions were not suitable to achieve bio-imaging in a convenient laboratory setting.

The CNBP team has shown for the first time that the technique can be used in a 3D biological environment, with biologically convenient particles which are both easy to work with and do not harm the samples.

This new methodological toolbox has the potential to go beyond the applications for which it has so far been used. It can be extended to a much broader imaging context, opening new avenues in the research of super-linear emitters and combining them with other imaging modalities to improve their performance.

Journal: Nature Communications

Publication Title: 3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters

Authors: Denitza Denkova, Martin Ploschner, Minakshi Das, Lindsay M. Parker, Xianlin Zheng, Yiqing Lu, Antony Orth, Nicolle H. Packer & James A. Piper

Abstract: Sub-diffraction microscopy enables bio-imaging with unprecedented clarity. However, most super-resolution methods require complex, costly purpose-built systems, involve image post-processing and struggle with sub-diffraction imaging in 3D. Here, we realize a conceptually different super-resolution approach which circumvents these limitations and enables 3D sub-diffraction imaging on conventional confocal microscopes. We refer to it as super-linear excitation-emission (SEE) microscopy, as it relies on markers with super-linear dependence of the emission on the excitation power. Super-linear markers proposed here are upconversion nanoparticles of NaYF4, doped with 20% Yb and unconventionally high 8% Tm, which are conveniently excited in the near-infrared biological window. We develop a computational framework calculating the 3D resolution for any viable scanning beam shape and excitation-emission probe profile. Imaging of colominic acid-coated upconversion nanoparticles endocytosed by neuronal cells, at resolutions twice better than the diffraction limit both in lateral and axial directions, illustrates the applicability of SEE microscopy for sub-cellular biology.

Link: https://www.nature.com/articles/s41467-019-11603-0