New probe to detect hydrogen peroxide

10 June 2019

A team of CNBP researchers have published a new paper discussing the design and application of a micro fabricated needle-like probe to measure hydrogen peroxide.  This new microfluidic tool has applications for monitoring dynamic chemical reactions in analytical chemistry and biological systems.

Journal: RSC Advances

Publication Title: Microfabricated needle for hydrogen peroxide detection

Authors: Shilun Feng, Sandhya Clement, Yonggang Zhu, Ewa M. Goldys and David W. Inglis

Abstract:  A microfabricated needle-like probe has been designed and applied for hydrogen peroxide (H2O2) sampling and detection using a commercial, single-step fluorescent H2O2 assay. In this work, droplets of the assay reagent are generated and sent to the needle tip using a mineral-oil carrier fluid. At the needle tip, the sample is drawn into the device through 100 mm long hydrophilic capillaries by negative pressure. The sampled fluid is immediately merged with the assay droplet and carried away to mix and react, producing a sequence of droplets representing the H2O2 concentration as a function of time. We have characterized the assay fluorescence for small variations in the sample volume. With the calibration, we can calculate the concentration of H2O2 in the sampled liquid from the size and intensity of each merged droplet. This is a microfluidic data-logger system for on-site continuous sampling, controlled reaction, signal storage and on-line quantitative detection. It is a useful tool for monitoring dynamic chemical reactions in analytical chemistry and biological applications.

Key words: Microfluidics, probe, H2O2, analytics chemistry