Binding mechanisms of solid-binding peptides

5 April 2019:

A new review article by CNBP PhD student Rachit Bansal and CNBP Associate Investigators (Anwar Sunna, Andrew Care and Tiffany Walsh) reports on experimental tools to study the binding mechanism of synthetic peptides to solid materials. The review provides insights into the role of these peptides as molecular building blocks for nanobiotechnology.

Journal: New Biotechnology.

Publication title: Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides.

Authors: Rachit Bansal, Andrew Care, Megan S. Lord, Tiffany R. Walsh, Anwar Sunna.

Abstract: The interactions between biomolecules and solid surfaces play an important role in designing new materials and applications which mimic nature. Recently, solid-binding peptides (SBPs) have emerged as potential molecular building blocks in nanobiotechnology. SBPs exhibit high selectivity and binding affinity towards a wide range of inorganic and organic materials. Although these peptides have been widely used in various applications, there is a need to understand the interaction mechanism between the peptide and its material substrate, which is challenging both experimentally and theoretically. This review describes the main characterisation techniques currently available to study SBP-surface interactions and their contribution to gain a better insight for designing new peptides for tailored binding.