Super-resolution volumetric imaging

11 December 2018:

The Australian Research Council (ARC) has announced funding for a super-resolution imaging facility that will be the first of its kind in Australia.

The facility brings together a consortium of multidisciplinary researchers from leading Australian Universities, Institutes and Research Centres (including CNBP) to develop new capacities for materials science, photonics devices, engineering, and neuroscience, microbial and cardiovascular research.

At its core the A$3.0m ARC LIEF project will enable scientists to study the inner workings of cells in their native environment. This represents a step change from currently imaging isolated 2D cells cultured in a petri dish to future research that will reveal subcellular structures and cell-to-cell communications in 3D tissue in real time.

The National Volumetric Imaging Platform, as it is known, will be installed, maintained and operated by the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) and the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) at RMIT University in Melbourne. This project is scheduled to be completed in late 2019.

UTS Professor Dayong Jin, Lead Chief Investigator of the project, said that the facility will give scientists a “new way to decode the complexities of life science machinery.”

“High-resolution imaging of the large volume of single cells and functional navigation of their interactions will allow researchers to drop into a ‘street view’ and observe the details of intercellular ‘live traffic’,” he said.

Prof Brant Gibson, Co-Deputy Director and RMIT node director of CNBP said, “I am very excited to lead the RMIT University node of the National Volumetric Imaging Facility and to work in collaboration with Jin Dayong, the UTS node and all of our collaborative institutional partners. This facility will enable us to image deeper within biological samples than we ever been able to before, with nanoscale resolution and extraordinary bandwidth stretching from the near-UV (400nm) well into the infrared (1650nm) spectrum.”

Prof Mark Hutchison, Professor at the Adelaide Medical School and Director of the CNBP at the University of Adelaide said, “This is an exciting development of advanced imaging infrastructure capacity that will allow a convergence of scientists from across the country to gain an unprecedented level of molecular insights into the complex systems and arrangement of cells in biologically relevant complex 3 dimensional environments.”

Participating Organisations include: Universities: University of Technology Sydney, RMIT University, University of Wollongong, University of Sydney, The University of Queensland, The University of New South Wales, Macquarie University, The University of Adelaide.

Institutes and Centres: Institute for Biomedical and Materials Devices, ARC Research Hub for Integrated Device for End-user Analysis at Low-levels, Institute for Molecular Horizons, the Heart Research Institute, ithree Institute, Centre for Translational Neuroscience, Australian Centre for Ecogenomics, ARC Centre of Excellence for Nanoscale BioPhotonics.