Monthly Archives: August 2018

Future Fellowship success for CNBP researchers

13 August 2018:

In exciting grant funding news, ARC Future Fellowships were recently awarded to the following CNBP researchers:

Prof Mark Hutchinson (CNBP Director, pictured) – University of Adelaide. Measuring pain in livestock: mechanisms, objective biomarkers and treatments.

Dr Ivan Maksymov (CNBP Researcher Fellow) – RMIT University. Nonlinear optical effects with low-power non-laser light.

Dr Steven Wiederman (CNBP Associate Investigator) – University of Adelaide. From insects to robots: how brains make predictions and ignore distractions.

The Future Fellowships scheme supports research in areas of critical national importance by giving outstanding researchers incentives to conduct their research in Australia. Each Future Fellow recipient will receive salary and on-cost support for four years, and up to $50,000 in additional funding per year for other essential costs directly related to their project.

Congratulations to all Fellowship recipients who will now be able to further develop and advance their innovative areas of research! Further information on Fellowship projects are available from the ARC web site.

Open Day at the University of Adelaide

12 August 2018:

The CNBP team at the University of Adelaide had their light-based science, advanced new tools and innovative startup companies on show at this year’s Open Day, Sunday 12 August, 2018.

Members of the public and aspiring students had the opportunity to see ultra small 3D imaging needles from Miniprobes, the sensor from MEQ Probe that utilises spectral analysis to objectively determine the quality of meat in seconds, and chemistry demonstrations from CNBP PhD students Aimee Horsfall, Kathryn Palasis & Patrick Capon demonstrating a pH Universal Indicator.

The Open Day showcases the University’s programs, facilities, and staff, with the aim of helping those individuals who are thinking about entering higher-education study. CNBP’s efforts were focused on displaying the benefits and career opportunities possible in the biophotonics space (academically and commercially) following a strong undergraduate degree in science.

Below – Photos from the Open Day. Top photo shows a demonstration of pH levels. Bottom photo shows Prof Mark Hutchinson, CNBP Director demonstrating the “MEQ Meat Probe”.

CNBP shines at RMIT Open Day

12 August 2018:

250 members of the public including families and potential students visited CNBP laboratories at RMIT University, Sunday 12th August, 2018, as a part of the institution’s Open Day activity.

Learning about the science of light, as well as sensing and imaging at the nanoscale, attendees were able to tour the biophotonics and cryogenic confocal laboratories, as well as experience first hand, demonstrations which included fluorescence microscopy.

“At times, the labs were packed with interested and engaged prospective students and their friends and families, said CNBP Deputy Director and RMIT node leader A/Prof Brant Gibson.

“It was amazing to hear the passion for science by some of the prospective students – some really knew what they wanted to study and some didn’t.”

“There was also excellent feedback from public regarding the the passion from my team when discussing CNBP research and why it is having such an impact for society, he says.”

Below – Emma Wilson demonstrating fluorescence microscopy! Bottom photo – Dr Philipp Reineck demonstrating fluorescence with UV light in the lab.

A kids focus at Sydney Science Festival

10 August 2018:

Over one hundred primary school children saw CNBP and Macquarie University researchers Dr Martin Ploschner (pictured) and Dr Annemarie Nadort present fun-filled light-focused science demonstrations at the Australian Museum as a part of National Science Week and the Sydney Science Festival for 2018.

Dr Martin Ploschner demonstrated how every-day items such as soap, detergent, money, and identity documents will glow or fluoresce when UV light is shone on them. Also demonstrated was the ‘glow affect’ from natural organisms such as scorpions, green leaves and bacteria on pistachios.

Dr Annemarie Nadort showed the children how they could see a network of blood vessels in their own tongue with a special microscope camera, facilitating an understanding of the human body and the tools needed to be able to see within it.

“The kids were amazed by seeing the continuous flow of red blood cells in the vessels. They were described as being like ‘in a rollercoaster’ or ‘like little ants walking on paths’, said Dr Nadort.

“It was great to see the excitement and interest from kids as young as six at our stand. Hopefully we managed to play a small role in promoting an ongoing interest in science in these bright and eager minds,” she said.

Below – Dr Annemarie Nadort and Dr Martin Ploschner demonstrate the wonders of science to children at the Australian Museum.

New nanoparticles help detect deep-tissue cancers

6 August 2018:

Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body.

Reported in the science journal ‘Nature Nanotechnology’, the research opens up a new avenue in minimally invasive disease diagnosis and will potentially have widespread use both for biomedical research and for clinical applications.

“The use of nanoparticles for bio-imaging of disease is an exciting and fast-moving area of science,” says research author Dr Yiqing Lu (pictured) at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University.

“Specially designed nanoparticles can be placed in biological samples or injected into specific sites of the body and then ‘excited’ by introduced light such as that from a laser or an optical fibre,” he says.

“Disease biomarkers targeted by these nanoparticles then reveal themselves, by emitting their own specific wavelength signatures which are able to be identified and imaged.”

A major limitation however is that only a single disease biomarker at a time is able to be distinguished and quantified in the body using this type of detection technique.

“Detection of multiple biomarkers (known as multiplexing) in the body has been a major challenge for researchers,” says Dr Lu.

“The tissue environment is extremely complex—full of light absorbing and scattering elements such as blood, muscle and cartilage. And introducing multiple nanoparticles to a site, operating at multiple wavelengths to detect multiple biomarkers, produces too much interference. It makes it extremely difficult to determine accurately if a range of disease biomarkers are present.”

What Dr Lu and the research team have done to solve this issue has been to engineer innovative nanoparticles that emit light at the same frequency (near infrared light) but that are able to be coded to emit light for set periods of time (in the microsecond-to-millisecond time range).

“It is the duration of the light-emission and the biomarker reaction to this timed amount of light (known as luminescence lifetime) that produces a clearly identifiable molecular signature,” he says.

“Multiple disease biomarkers can be clearly identified and imaged based on this approach as there are no overlapping wavelengths interfering with the reading.”

“This enables high-contrast optical biomedical imaging that can detect multiple disease biomarkers all at the one time.” says Dr Lu.

In an exciting breakthrough in laboratory testing, the innovative nanoparticles have been able to detect multiple forms of breast cancer tumours in mice.

“We’re extremely excited where this work is taking us,” says Professor Fan Zhang at Fudan University (China) and joint-lead author on the research publication.

“We were able to successfully detect and identify key biomarkers for a number of different sub-types of breast cancer.”

“This technique has the potential to provide a low-invasive method of determining if breast cancer is present, as well as the form of breast cancer, without the need to take tissue samples via biopsy.”

“Ultimately our novel nanoparticles will enable quantitative assessment for a wide range of disease and cancer biomarkers, all at one time. The technique will be able to be used for early-stage disease screening and potentially utilised in integrated therapy,” says Professor Fan Zhang.

Professor Jim Piper, CNBP node leader at Macquarie University and also an author on the paper is similarly upbeat with the results that have been obtained.

“This is a major advance in a long-term effort at our Centre at Macquarie University to develop innovative techniques for simultaneous detection of multiple disease markers in humans and animals,” he says.

“Next steps in our research collaboration are to further refine the nanoparticles, to examine issues related to a clinical roll-out of the technology and to explore further applications and disease areas where this technique could be best utilised.”

Reported in the prestigious journal ‘Nature Nanotechnology’, the international team of researchers involved with the study are based at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University and Fudan University, China.

Notably, the work is an extension of previous nanoparticle-imaging research undertaken by Dr Lu at Macquarie University which has been awarded a patent in the United States and China, and which has already been licensed with commercial partners.

Journal: Nature Nanotechnology.

Publication title: Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging.

Authors: Yong Fan, Peiyuan Wang, Yiqing Lu, Rui Wang, Lei Zhou, Xianlin Zheng, Xiaomin Li, James A. Piper & Fan Zhang.

Below: A stylised image of cancer detecting nanoparticles in the body. Credit: Yong Fan.