Reducing interference with cellular autofluorescence

14 March 2018:

CNBP Research Fellow Nicole Cordina is first author on a new study that reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging.

Journal: Scientific Reports.

Publication title: Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates.

Authors: Nicole M. Cordina, Nima Sayyadi, Lindsay M. Parker, Arun Everest-Dass, Louise J. Brown & Nicolle H. Packer.

Abstract:
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.