Monthly Archives: February 2018

Diabetes and early pregnancy

1 February 2018:

CNBP and Robinson Research Institute researcher Dr Hannah Brown, University of Adelaide is lead author on a newly published paper that looks to understand why pregnancy failure and pregnancy loss occurs in women with diabetes. The paper was published in the Nature journal Scientific Reports.

Publication titlePericonception onset diabetes is associated with embryopathy and fetal growth retardation, reproductive tract hyperglycosylation and impaired immune adaptation to pregnancy.

Authors: Hannah M. Brown, Ella S. Green, Tiffany C. Y. Tan, Macarena B. Gonzalez, Alice R. Rumbold, M. Louise Hull, Robert J. Norman, Nicolle H. Packer, Sarah A. Robertson & Jeremy G. Thompson.

Abstract: Diabetes has been linked with impaired fertility but the underlying mechanisms are not well defined. Here we use a streptozotocin-induced diabetes mouse model to investigate the cellular and biochemical changes in conceptus and maternal tissues that accompany hyperglycaemia. We report that streptozotocin treatment before conception induces profound intra-cellular protein β-O-glycosylation (O-GlcNAc) in the oviduct and uterine epithelium, prominent in early pregnancy. Diabetic mice have impaired blastocyst development and reduced embryo implantation rates, and delayed mid-gestation growth and development. Peri-conception changes are accompanied by increased expression of pro-inflammatory cytokine Trail, and a trend towards increased Il1a, Tnf and Ifng in the uterus, and changes in local T-cell dynamics that skew the adaptive immune response to pregnancy, resulting in 60% fewer anti-inflammatory regulatory T-cells within the uterus-draining lymph nodes. Activation of the heat shock chaperones, a mechanism for stress deflection, was evident in the reproductive tract. Additionally, we show that the embryo exhibits elevated hyper-O-GlcNAcylation of both cytoplasmic and nuclear proteins, associated with activation of DNA damage (ɣH2AX) pathways. These results advance understanding of the impact of peri-conception diabetes, and provide a foundation for designing interventions to support healthy conception without propagation of disease legacy to offspring.