Monthly Archives: February 2018

Goldys on ‘Key Thinkers’ panel

8 February 2018:

The ability to develop a holistic and interdisciplinary vision was raised as a key attribute and skill by CNBP Deputy Director Prof Ewa Goldys at today’s ‘Key Thinkers – Key Concepts – Scholarly Gaze’ panel discussion, coordinated by the Faculty of Human Sciences, based at Macquarie University.

The event, consisting of prominent scientific speakers across differing disciplines, looked to better define the process of ‘seeing’ and ‘observation’ within the higher education research environment. Discussed were the use of technologies and techniques to help support advanced scientific theory development as well as best-practice methodology and laboratory experimentation.

Goldys, Professor at UNSW and Adjunct Professor at Macquarie University noted the advantages of having alternate vantage points and expertise from differing disciplines in her imaging, visualisation and cell colour research at the CNBP.

“It is the ability to bring together multiple disciplines and areas  – such as physics, chemistry, biology, medicine and materials science – that allows for the big science and health questions to be explored and then answered,” she said.

Below – Prof Ewa Goldys discussing the way in which she has successfully combined computer analysis with microscopy, to extract highly detailed cellular information that can help distinguish between healthy and diseased cells.

Detonation nanodiamonds to aid bioimaging

6 February 2018:

Tiny 5 nm detonation nanodiamonds glow in different colors and their fluorescence is pH dependent, reports a new paper by CNBP scientists published today in the Nature journal Scientific Reports.

Lead author of the paper Dr Philipp Reineck from RMIT University (Former CNBP Research Fellow and current CNBP Associate Investigator) notes that the research is particulalry exciting as the fluorescence lifetime of the detonation nanodiamonds makes fluorescence lifetime imaging (FLIM) for bioimaging applications feasible.

Journal: Scientific Reports.

Publication title: Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence.

Authors: Philipp Reineck, Desmond W. M. Lau, Emma R. Wilson, Nicholas Nunn, Olga A. Shenderova & Brant C. Gibson.

Abstract: Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles’ absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.

Diabetes and early pregnancy

1 February 2018:

CNBP and Robinson Research Institute researcher Dr Hannah Brown, University of Adelaide is lead author on a newly published paper that looks to understand why pregnancy failure and pregnancy loss occurs in women with diabetes. The paper was published in the Nature journal Scientific Reports.

Publication titlePericonception onset diabetes is associated with embryopathy and fetal growth retardation, reproductive tract hyperglycosylation and impaired immune adaptation to pregnancy.

Authors: Hannah M. Brown, Ella S. Green, Tiffany C. Y. Tan, Macarena B. Gonzalez, Alice R. Rumbold, M. Louise Hull, Robert J. Norman, Nicolle H. Packer, Sarah A. Robertson & Jeremy G. Thompson.

Abstract: Diabetes has been linked with impaired fertility but the underlying mechanisms are not well defined. Here we use a streptozotocin-induced diabetes mouse model to investigate the cellular and biochemical changes in conceptus and maternal tissues that accompany hyperglycaemia. We report that streptozotocin treatment before conception induces profound intra-cellular protein β-O-glycosylation (O-GlcNAc) in the oviduct and uterine epithelium, prominent in early pregnancy. Diabetic mice have impaired blastocyst development and reduced embryo implantation rates, and delayed mid-gestation growth and development. Peri-conception changes are accompanied by increased expression of pro-inflammatory cytokine Trail, and a trend towards increased Il1a, Tnf and Ifng in the uterus, and changes in local T-cell dynamics that skew the adaptive immune response to pregnancy, resulting in 60% fewer anti-inflammatory regulatory T-cells within the uterus-draining lymph nodes. Activation of the heat shock chaperones, a mechanism for stress deflection, was evident in the reproductive tract. Additionally, we show that the embryo exhibits elevated hyper-O-GlcNAcylation of both cytoplasmic and nuclear proteins, associated with activation of DNA damage (ɣH2AX) pathways. These results advance understanding of the impact of peri-conception diabetes, and provide a foundation for designing interventions to support healthy conception without propagation of disease legacy to offspring.