Monthly Archives: December 2017

Annual CNBP conference jam-packed!

4 December 2017:

The CNBP research community (Chief investigators, Associate Investigators, researchers, students and members of the International Science Committee) came together for the Fourth Annual CNBP Conference, Tue 28th November to Fri 1st December 2017, in what was a jam-packed schedule of science.

Activities at the Conference included ‘quick speed’ data blitz presentations; key note speeches from CNBP researchers and international guests including from Professor Kishan Dholakia, Professor Kelly Nash and Professor Volker Deckert; science speed dating sessions; poster sessions and team building activities including the infamous grand spaghetti tower challenge which proved to be far more demanding than expected!

The largest Conference to date, the event allowed for an amazing amount of fantastic data to be shared, with collaborations continuing to be built and developed, and new ideas being generated and explored by enthusiastic and engaged team members from across all nodes and partner institutions.

Additional Conference highlights included a professional development session by Dr Peter Grace investigating “The how and why of networking for Scientists” and then a discussion on the importance of tools and social platforms such as LinkedIn, and then pointers on how best to approach senior researchers and potential collaborators at events and other Conferences.

Finally, there was a ‘reflective session’ which provided an opportunity to reflect on science discussions and to then actively plan for the next 12 months of CNBP related activity.

Below – Photos from what was an extremely rewarding Conference!

Copper oxide nanocubes good for bioimaging

Nafisa Zohora4 December 2017:

New CNBP research determines that copper oxide nanocubes are suitable for long-term bioimaging experiments. Lead author on the paper – CNBP PhD student Zafisa Zohora (RMIT University).

Journal: Scientific Reports.

Publication titleFluorescence brightness and photostability of individual copper (I) oxide nanocubes.

Authors: Nafisa Zohora, Ahmad Esmaielzadeh Kandjani, Antony Orth, Hannah M. Brown, Mark R. Hutchinson & Brant C. Gibson.

Abstract:
Conventional organic fluorophores lose their ability to fluoresce after repeated exposure to excitation light due to photobleaching. Therefore, research into emerging bright and photostable nanomaterials has become of great interest for a range of applications such as bio-imaging and tracking. Among these emerging fluorophores, metal oxide-based nanomaterials have attracted significant attention as a potential multifunctional material with photocatalytic and angeogenisis abilities in addition to fluorescnce applications. However, most of these applications are highly dependent on size, morphology, and chemo-physical properties of individual particles. In this manuscript, we present a method to study the intrinsic optical characteristics of individual copper (I) oxide (Cu2O) nanocubes. When excited at 520 nm using only 11 µW excitation power (1.7 W/cm2), individual nanocubes were observed to emit light with peak wavelengths ~760 nm which is conveniently within the near-infrared 1 (NIR1) biological window where tissue autofluorescence is minimal. Bright and photostable fluorescence was observed with intensities up to 487 K counts/s under constant illumination for at least 2 minutes with a brightness approximately four times higher than the autofluorescence from a fixed cumulus-oocyte complex. With near-IR emission, high fluorescence brightness, and outstanding photostability, Cu2O nanocubes are attractive candidates for long-term fluorescent bioimaging applications.