First reversible ‘turn-off’ sensor for Glutathione

6 September 2017:

The first reversible ‘turn-off’ sensor for Glutathione has been reported by CNBP researchers in a paper published in the science journal Biosensors.

The paper is accessible online (open access).

Dr Sabrina Heng notes:

γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with disease. Many diseases including Parkinson’s, cancer, heart diseases and Alzheimer’s are indicated by a decrease in GSH levels. In this case, a ‘turn on’ sensor would result in reduced fluorescence relative to healthy cells. An important advance would come from the development of a sensor that is measurably turned off by GSH and back on by a lower level of GSH. This would then provide an opportunity to sense reduced GSH levels during the onset of important diseases.

With that in mind we have rationally designed, to the best of our knowledge, the first reversible, reaction-based ‘turn-off’ probe that is suitable for sensing decreasing levels of GSH, a situation known to occur at the onset of various diseases.  We have demonstrated that the sensor can be used to detect changes of intracellular GSH in live HEK 293 cells to provide a potentially regenerable sensor for monitoring lower levels of intracellular GSH as associated with the onset of important diseases.

Journal: Biosensors.

Publication title: A Rationally Designed Reversible ‘Turn-Off’ Sensor for Glutathione.

Authors: Sabrina Heng (pictured), Xiaozhou Zhang, Jinxin Pei and Andrew D. Abell.

Abstract: γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence (‘turn-on’) once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based ‘turn-off’ probe (1) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence (‘turn-off’). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis.