Monthly Archives: April 2017

Maximizing particle concentration

28 April 2017:

A new paper from CNBP researchers reports on an improvement to deterministic lateral displacement arrays, which allows for higher particle concentration enhancement. The work has just been published in the journal ‘Biomicrofluidics’ and is accessible online.

Journal: Biomicrofluidics.

Title: Maximizing particle concentration in deterministic lateral displacement arrays.

Authors: Shilun Feng, Alison M. Skelley, Ayad G. Anwer (pictured top left), Guozhen Liu and David W. Inglis.

Abstract: We present an improvement to deterministic lateral displacement arrays, which allows higher particle concentration enhancement. We correct and extend previous equations to a mirror-symmetric boundary. This approach allows particles to be concentrated into a central channel, no wider than the surrounding gaps, thereby maximizing the particle enrichment. The resulting flow patterns were, for the first time, experimentally measured. The performance of the device with hard micro-spheres and cells was investigated. The observed flow patterns show important differences from our model and from an ideal pattern. The 18 μm gap device showed 11-fold enrichment of 7 μm particles and nearly perfect enrichment—of more than 50-fold—for 10 μm particles and Jurkat cells. This work shows a clear path to achieve higher-than-ever particle concentration enhancement in a deterministic microfluidic separation system.

 

Tuning third harmonic light

27 April 2017:

Researchers from CNBP and The Institute of Photonic Technology (lead author Stephen Warren-Smith pictured), have just had a paper published on tuning third harmonic light generated within exposed-core fibres.

Journal: Optics Letters.

Publication title: Nanofilm-induced spectral tuning of third harmonic generation.

Authors: Stephen C. Warren-Smith, Mario Chemnitz, Henrik Schneidewind, Roman Kostecki, Heike Ebendorff-Heidepriem, Tanya M. Monro and Markus A. Schmidt.

Abstract: Intermodal third-harmonic generation using waveguides is an effective frequency conversion process due to the combination of long interaction lengths and strong modal confinement. Here we introduce the concept of tuning the third harmonic phase-matching condition via the use of dielectric nanofilms located on an open waveguide core. We experimentally demonstrate that tantalum oxide nanofilms coated onto the core of an exposed core fiber allow tuning the third harmonic wavelength over 30 nm, as confirmed by qualitative simulations. Due to its generic character, the presented tuning scheme can be applied to any form of exposed core waveguide and will find applications in fields including microscopy, biosensing, and quantum optics.

The paper is accessible online.

IVF grant success

26 April 2017:

CNBP Chief Investigator, A/Prof Jeremy Thompson has received $7000 in travel support from the Global Connections Fund Priming Grants initiative.

The grant will fund travel to the USA to visit cattle IVF units with the aim of learning how they have made a successful business of in vitro produced embryos, and where it applies best in their (beef) breeding and genetic selection operations.

While there, A/Prof Thompson will be sharing knowledge and experiences and seeing if there are potential collaborative opportunities.

Light-triggerable liposomes

21 April 2017:

A new paper from CNBP researchers (lead author Wenjie Chen pictured) reports on the design of a new light-triggerable liposome. The work has just been published in the journal ‘Molecular Therapy: Nucleic Acid’ and is accessible online.

Journal: Molecular Therapy: Nucleic Acid.

Title: Light-triggerable liposomes for enhanced endo/lysosomal escape and gene silencing in PC12 cells.

Authors: Wenjie Chen, Wei Deng, Ewa M. Goldys.

Abstract: Liposomes are an effective gene/drug delivery system, widely used in biomedical applications including gene therapy and chemotherapy. Here we designed a photo-responsive liposome (lipVP) loaded with a photosensitizer verteporfin (VP). This photosensitizer is clinically approved for photodynamic therapy (PDT). LipVP was employed as a DNA carrier for pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor 1 (PAC1R) gene knockdown in PC12 cells. This has been done by incorporating PAC1R antisense oligonucleotides inside the lipVP cavity. Cells which have taken up the lipVP were exposed to light from a UV light source. As a result of this exposure, reactive oxygen species (ROS) were generated from VP, destabilising the endo/lysosomal membranes and enhancing the liposomal release of antisense DNA into the cytoplasm. Endo/lysosomal escape of DNA was documented at different time points based on quantitative analysis of colocalization between fluorescently labelled DNA and endo/lysosomes. The released antisense oligonucleotides were found to silence PAC1R mRNA. The efficiency of this photo-induced gene silencing was demonstrated by a 74 ± 5% decrease in PAC1R fluorescence intensity. Following the light-induced DNA transfer into cells, cell differentiation with exposure to two kinds of PACAP peptides was observed to determine the cell phenotypic change after PAC1R gene knockdown.

Social media for research engagement

21 April 2017:

CNBP’s Dr Hannah Brown (pictured), together with Prof Ben Mol, the University of Adelaide and Melinda Cruz, CEO and Founder of Miracle Babies Foundation, believe that social media interaction and scientific activity should go hand-in-hand.

They argue that increased social engagement by scientists with collaborators, the media, governing and funding bodies, government and consumers underlies research success.

Check out their latest written piece, ‘Social media is essential for research engagement‘ in BJOG, an International Journal of Obstetrics and Gynaecology.

Synthesis of optical spectra

3 April 2017:

A new publication from CNBP researchers (lead author Dr Ivan Maksymov pictured)  demonstrates a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology.

The work has just been reported in the journal ‘Optics Express’ and is accessible online.

Journal: Optics Express.

Title: Synthesis of discrete phase-coherent optical spectra from nonlinear ultrasound.

Authors: Ivan S. Maksymov and Andrew D. Greentree.

Abstract: Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology. The synthesised spectra consist of a set of equally spaced optical Brillouin light scattering modes having a well-defined phase relationship between each other. We suggest that these spectra may be employed as optical frequency combs whose spectral composition may be tuned by controlling the nonlinear acoustic interactions.

New sensing methods for embryos

2 April 2017:

A/Prof Jeremy Thompson, CNBP Chief Investigator, has given an invited talk at  the 7th Congress of the Asia Pacific Initiative on Reproduction (ASPIRE 2017) in Kuala Lumpur, Malaysia, on the 2nd April 2017.

The Congress is the largest clinical reproductive medicine meeting in the Asia-Pacific region with A/Prof Thompson’s talk titled, “New sensing methods for embryos.”