A step towards bio-inspired quantum interferometers

Jingxian Yu_low_sq29 November 2016:

CNBP researchers (lead author Jingxian Yu pictured), have published a paper exploring the quantum interference effects on electronic transport in peptides. The work has just been reported in the journal ‘Molecular Systems Design & Engineering’ and is accessible online.

Journal: Molecular Systems Design & Engineering.

Title: Exploiting the interplay of quantum interference and backbone rigidity on electronic transport in peptides: A step towards bio-inspired quantum interferometers.

Authors: Jingxian Yu, John R Horsley and Andrew D Abell.

Abstract: Electron transfer in peptides provides an opportunity to mimic nature for applications in bio-inspired molecular electronics. However, quantum interference effects, which become significant at the molecular level, have yet to be addressed in this context. Electrochemical and theoretical studies are reported on a series of cyclic and linear peptides of both β-strand and helical conformation, to address this shortfall and further realize the potential of peptides in molecular electronics. The introduction of a side-bridge into the peptides provides both additional rigidity to the backbone, and an alternative pathway for electron transport. Electronic transport studies reveal an interplay between quantum interference and vibrational fluctuations. We utilize these findings to demonstrate two distinctive peptide-based quantum interferometers, one exploiting the tunable effects of quantum interference (β-strand) and the other regulating the interplay between the two phenomena (310-helix).