New CNBP PhD student

20 October 2017:

CNBP welcomes its latest PhD student Lu Peng who will study under the supervision of Center Investigators Prof Heike Ebendorff-Heidepriem and Dr Stephen Warren-Smith at the University of Adelaide.

Lu’s project is focused on the use of exposed-core microstructured optical fibre to do two-dimensional fibre imaging. This research has the potential to be used in both biological and medical fields. The aim is to get high resolution and accurate information realized in a single exposed fibre.

Following an undergraduate degree in physics, Lu gained her Master’s degree in optics from South China Normal University. Her thesis at that time, examined a micro-structured fibre refractive index sensor, based on surface plasmon resonance.

Welcome to the CNBP team Lu!

Centre AI awarded prestigious Malcolm McIntosh Prize

18 October 2017:

CNBP Associate Investigator Professor Dayong Jin, at the University of Technology Sydney, has been awarded the Malcolm McIntosh Prize for Physical Scientist of the Year.

The award recognises Professor Jin’s innovative work with nanocrystals which allow for enhanced molecular imaging deep within the cellular environment, aiding early stage detection of cancer and disease.

The Prize, part of the ‘Prime Minister’s Prizes for Science’ series, are awarded annually and are a public recognition and tribute to the contributions that scientists, innovators and science teachers are making to Australia’s current and future scientific and commercialisation capabilities.

Full award details as well as a video and summary of Professor Jin’s work is available from the Australian Government web site.

Nanorubies for targeted bio-imaging

12 October 2017:

Researchers from the CNBP have released a new paper that examines the use of nanorubies for targeted bio-imaging activity. The work (lead author Varun Sreenivasan pictured) is trans-disciplinary in nature, drawing on the Centre’s collective knowledge in physics, pharmacology, chemistry, material science and embryology. The paper, published in ACS Applied Materials and Interfaces is accessible online.

Journal: ACS Applied Materials and Interfaces.

Publication title: Development of Bright and Biocompatible Nanoruby and its Application to Background-free Time-gated Imaging of G-protein Coupled Receptors.

Authors:  Varun K. A. Sreenivasan, Wan Aizuddin W Razali, Kai Zhang, Rashmi R Pillai, Avishkar Saini, Denitza Denkova, Marina Santiago, Hannah Brown, Jeremy Thompson, Mark Connor, Ewa M. Goldys, and Andrei V Zvyagin.

Abstract: At the forefront of development of fluorescent probes for biological imaging applications are enhancements aimed at increasing their brightness, contrast, and photostability, especially towards demanding applications of single molecule detection. In comparison with existing probes, nanorubies exhibit unlimited photostability and a long emission lifetime (3.7 ms), which enable continuous imaging at single-particle sensitivity in highly scattering and fluorescent biological specimens. However, their wide application as fluorescence probes has so far been hindered by the absence of facile methods for scaled-up high volume production and molecularly-specific targeting. The present work encompasses large scale production of colloidally stable nanoruby particles, demonstration of their biofunctionality and negligible cytotoxicity, as well as validation of its use for targeted biomolecular imaging. In addition, optical characteristics of nanorubies are found to be comparable or superior to state-of-the-art quantum dots. Protocols of reproducible and robust coupling of functional proteins to the nanoruby surface are also presented. As an example, NeutrAvidin-coupled nanoruby show excellent affinity and specificity to µ-opioid receptors in fixed and live cells, allowing wide-field imaging of G-protein coupled receptors with single particle sensitivity.

Nano ‘terminator style’ antennae

12 October 2017:

The liquid metal, shape-shifting T-1000 Terminator cyborg, featuring in a 1991 science-fiction film Terminator 2, was made possible due to breakthroughs in computer-generated imagery.

Some 25 years later, using breakthroughs in physics and chemistry CNBP scientists Dr Ivan Maksymov and Prof Andy Greentree at RMIT University have shown reconfigurable liquid-metal optical nanoantennae.

“An optical nanoantenna operates similarly to a conventional radio-frequency antenna, but its size is millions of times smaller” explains Dr Ivan Maksymov, “so it can receive and emit light similar to how a mobile phone antenna receives and emits radio waves.”

“The shape and length of the metal components that form a radio-frequency antenna determine its major properties such as operating frequency and radiation pattern,” explains Prof Andy Greentree, “so a liquid metal that can change its shape by applying voltage allows for changing antenna properties, which otherwise is difficult to achieve with fixed metal parts.”

“However, reconfigurability of optical nanoantennae is even more difficult to achieve than in radio-frequency antennae, because of their small size and lack of technologies enabling us to apply voltage to nanoscale sized objects. Therefore, we proposed a new solution – reconfiguration of liquid-metal nanoparticles using ultrasound.”

Continued Dr Maksymov, “A liquid-metal nanoparticle can change its shape due to capillary oscillations, which can be seen by everybody when observing water drops falling from a leaking kitchen tap. Drops change their shape when they detach from the tap and fall into the sink. In our work, we use ultrasound to change the shape of liquid-metal nanodroplets, which changes the nanoantenna’s operating frequency.”

“But fundamental physics remains the same as in the case of water drops.”

The paper ‘Dynamically reconfigurable plasmon resonances enabled by capillary oscillations of liquid-metal nanodroplets’ is accessible online.

Prof Goldys elected as ATSE Fellow

11 October 2017:

Fluorescence expert Ewa Goldys, Deputy Director at the CNBP and Professor at Macquarie University, has been elected as a Fellow of the Australian Academy of Technological Sciences and Engineering (ATSE).

The Fellowship recognises Professor Goldys’ pioneering research in non-invasive medical diagnostics, and her work associated with fluorescence, advanced materials and biomedicine, supporting clinicians in making improved diagnosis and health decisions for patients.

“It’s a great pleasure to be recognised with this Fellowship”, says Professor Goldys.

“The ATSE is a respected Australian body which provides informed and visionary views to decision-makers across a wide range of technology focused areas. I look forward to providing my input and advice as a member of this prestigious organisation.”

As a world leader in the study of cellular fluorescence, Professor Goldys is also a former Eureka Prize winner for her innovative use of technology. This prize was awarded for her work in developing revolutionary imaging techniques, allowing for the extraction of biomolecular information hidden in fluorescent colour signatures of living cells and tissues.

“Modern day microscopes and powerful computer analysis enables colour to be used as a uniquely powerful diagnostic tool in medicine,” she says.

“Exploring the subtle colour differentiations of cells and tissue lets us distinguish between healthy and diseased cells in areas as diverse as embryology, neurodegeneration, cancer and diabetes.”

As an ATSE Fellow, Professor Goldys will provide expertise across biomedical, nanotechnology and biophotonics areas. She will also be able to tap into the knowledge and capability of her research and industry collaborators.

“Australia needs to harness technology and innovation as part of its successful transition to a knowledge based economy,” says Professor Goldys. “This is what the ATSE mandate is all about.”

Recognising Australia’s leading minds in technology, science and engineering, the prestigious ATSE Fellowships are awarded to people who apply technology in smart, strategic ways for social, environmental and economic benefit.

Fellows advise government, industry and the community on how technology can improve the quality of life of all Australians and are drawn from academia, government, industry and research sectors.

The ATSE Fellowship announcement is accessible online from the ATSE web site.

Lung tissue aspiration

11 October 2017:

A new publication from CNBP researchers explores the integration of an optical coherence tomography (OCT) probe into a flexible needle for lung tissue aspiration. The paper (lead author Jiawen Li pictured), was published in the Journal of Biomedical Optics and is accessible online.

Journal: Journal of Biomedical Optics.

Publication title: Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration.

Authors: Jiawen Li; Bryden C. Quirk; Peter B. Noble; Rodney W. Kirk; David D. Sampson; Robert A. McLaughlin.

Abstract: Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between solid tissue and two typical constituents of nondiagnostic samples (adipose and lung parenchyma). Clinical translation of this OCT-guided aspiration needle holds promise for improving the diagnostic yield of TBNA.

New CNBP researcher at MQ University

6 October 2017:

CNBP welcomes its newest postdoctoral researcher to the team – Dr Jared Campbell who has just relocated to Sydney’s Macquarie University from the University of Adelaide.

The move will see Jared work closely with Centre Deputy Director Prof Ewa Goldys where he will be focused on using hyperspectral microscopy to research the effect of increasing age on the intracellular characteristics of mesenchymal stem cells – specifically their metabolic state as indicated by NAD+, as well as interventions which can ameliorate or reverse these effects.

Jared did his PhD at the University of Adelaide where he studied the interaction between metabolism and pluripotency in in vitro cultured embryos as well as the effect of improved metabolic control on the health of subsequently derived embryonic stem cells.

He then did a post-doc at the Joanna Briggs Institute where he applied systematic review and meta-analysis methodologies to investigate the impact of obesity on male fertility and the effect of AMPK activation on human health and lifespans.

Jared’s experience includes the investigation of intracellular signalling pathways, confocal microscopy, embryology, stem cell culture, epidemiology and meta-analysis.

He has also successfully supervised six masters and one PhD student to the completion of their projects.

A big welcome to ‘Team CNBP’ Jared!

Antibiotic research featured by the NHMRC

4 October 2017:

With only two new antibiotic classes being discovered and developed in the last 50 years, Professor Andrew Abell, CNBP Chief Investigator and his team at the University of Adelaide have been featured on the NHMRC website as one of the ‘ten best’ research stories of the year.

Prof Abell and team are going back to the fundamentals of chemical science in an attempt to develop a new class of antibiotics.

Motivated by a desire to understand the molecular basis of key biological processes, Professor Abell is exploring small molecules that selectively bind to bacterial proteins, as a potential mechanism for limiting bacterial survival.

Read the full story of Prof Abell’s antibiotic focused research here!

New med-tech zinc sensor developed

29 September 2017:

A new zinc sensor has been developed by CNBP researchers, which will allow for a deeper understanding of the dynamic roles that metal ions play in regulating health and disease in the living body.

The research, published in the journal ACS Omega reports that the newly designed chemical sensor can detect and measure zinc levels in cells. It also has the functionality and portability to take continuous or repeated measurements within a single biological sample.

“This makes the sensor potentially suitable for use in future diagnostic tools that could open up entirely new windows into the body,” says lead author of the research Dr Sabrina Heng (pictured), Research Fellow at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), at the University of Adelaide.

Read more at PHYS.ORG.

Automated image analysis aids bladder cancer diagnosis

28 September 2017:

An automated image analysis technique has been developed by CNBP researchers (lead researcher Dr Martin Gosnell pictured) that is able to aid in the diagnosis of bladder cancer, and could potentially reduce the number of biopsies being taken unnecessarily.

Read the full article detailing the research and future opportunities, featured in Optics.org.