CNBP 2019 conference awards

Last week saw CNBP researchers come together from around the country for the annual conference in Adelaide.

The week culminated in gala where researchers were recognised for their achievements through awards ranging from academic excellence to commercial impact, outreach and collaboration.

Read about the awardees below, and congratulations to all our members who were recognised for their achievements in 2019!

Congratulations to the CNBP team!
Joint first author Denitza Denkova

2019 Academic Excellence Award Transdisciplinary Research Publication

Awarded to the best 2019 publication connecting CNBP researchers from multiple disciplines. This year’s award recognises a collaboration between researchers working with nanoparticles, microscopy, computational imaging and molecular & cellular biology.

Denkova, D., M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer and J. A. Piper (2019). “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters.” Nat Commun 10(1): 3695.

https://www.nature.com/articles/s41467-019-11603-0

First author Marco Capelli

2019 Academic Excellence Award – International Impact

Awarded to the best 2019 publication connecting CNBPs Australian researchers with International Partners. This year’s award recognises collaboration between researchers at RMIT University and QST, Japan.

Capelli, M., A. H. Heffernan, T. Ohshima, H. Abe, J. Jeske, A. Hope, A. D. Greentree, P. Reineck and B. C. Gibson (2019). “Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature.” Carbon 143: 714-719.

https://www.sciencedirect.com/science/article/abs/pii/S0008622318310807?via%3Dihub

First author Yunle Wei

2019 Academic Excellence Award – Best Student Publication

Awarded to the best 2019 publication first authored by a CNBP student as determined by journal impact factor.

Wei, Y., H. Ebendorff‐Heidepriem and J. Zhao (2019). “Recent Advances in Hybrid Optical Materials: Integrating Nanoparticles within a Glass Matrix.” Advanced Optical Materials. DOI: 10.1002/adom.201900702

https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900702

 

First author, Peipei Jia

2019 Academic Excellence Award – Best Researcher (non-student) Publication

Awarded to the best 2019 publication as determined by journal impact factor.

Jia, P., K. Zuber, Q. Guo, B. C. Gibson, J. Yang and H. Ebendorff-Heidepriem (2019). “Large-area freestanding gold nanomembranes with nanoholes.” Materials Horizons 6(5): 1005-1012. DIO:10.1039/c8mh01302k

https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01302k#!divAbstract

First author Abbas Habibahali

2019 Highest Altmetrics – Social Impact

Awarded to the 2019 publication recognised by the wider non-academic community, as determined by Altmetric score.

Habibalahi, A., C. Bala, A. Allende, A. G. Anwer and E. M. Goldys (2019). “Novel automated non invasive detection of ocular surface squamous neoplasia using multispectral autofluorescence imaging.” Ocular Surface. DOI:10.1016/j.jtos.2019.03.003

https://www.sciencedirect.com/science/article/abs/pii/S1542012418302842?via%3Dihub

Patrick Capon

2019 Quality Communication Award – Social Media

Awarded to Patrick Capon (@PatCapon) for his diverse, informative and entertaining engagement with the @CNBPscience twitter handle.

 

 

Lindsay Parker

2019 Quality Communication Award – Engagement in Centre Outreach Activity

Awarded to Dr Lindsay Parker for community engagement activities including: Science in the Swamp, Exploring Brain Research at Castle Hill Library; and multiple engagements with school groups in Sydney and her home town in the USA.

 

Andrew Greentree

2019 Nurturing Environment Award – Mentor

Awarded to Professor Andrew Greentree for commitment to mentorship and contribution to CNBP professional development activities including the PhD Publication’s Masterclass, Research integrity training and supporting fellowship applications.

 

Georgina Sylva

2019 Nurturing Environment Award – 5% Commitment to CNBP

This award recognises individuals that go above and beyond CNBPs requirement for researchers to commit 5% of their time to non-research activities. Awarded to Dr Georgina Sylva for ongoing commitment to science outreach in regional and remote communities.

 

Heike Ebendorff-Heidepriem

2019 Commercial Impact Award – Individual Engagement with Industry/End-users

Awarded to a CNBP researcher for successful collaboration with industry and end-users. Prof Heike Ebendorff-Heidepriem for her disruptive glass projects with multiple industry partners and her collaborations with the glass-art community.

 

Tom Avery

2019 Commercial Impact Award – CNBP Project

Awarded for the most successful CNBP research project – industry collaboration. Dr Thomas Avery and Associate Professor Peter Grace for next gen non-opioid non addictive pain therapies.

 

 

Suliman Yagoub

2019 Photo/Video Competition Award

Awarded to the photo captured by Suliman Yagoub: Embryo staining for DNA repair #MicroFireWorks #Embryology @UniofAdelaide @UofA_embros
https://twitter.com/sulimanyagoub/status/1181446291491966977?s=12
@CNBPscience #cnbp2019photocomp

2019 Pitch Fest Award

CNBP pitch fest is the brain child of the ECR led Entrepreneurs Network. After participation in a CNBP-led pitching workshop, Individuals pitch their idea/project to the wider CNBP community with pitches judged by an expert panel.

2019 Pitch Fest presenters

Equal first prize:

Mr Suliman Yagoub: Towards Automation of in vitro Fertilization (IVF) Treatment.

Current IVF success requires skilled embryologists to perform regular, routine procedures. By automating and standardizing IVF procedures we will reduce human error for IVF treatments world-wide

Dr Andrew Care and A/Prof Lyndsay Collins-Praino: Intercepting Parkinson’s Disease

This novel technology employs bioengineered nanoparticles to halt the progression of Parkinson’s Disease inside the human brain.

Aimee Horsfall

2019 Annual Conference – Best Poster Award

Awarded to the best CNBP conference poster by popular vote. Aimee Horsfall – Poster: Enhancing protein biosensor sensitivity requires detailed structural insight.

 

 

2019 Director’s Award

Each year the Prof Mark Hutchinson identifies the individual(s) who’s contribution to the centre and/or support to the Director has stood out. Joint award to the CNBP Deputy Directors: Prof Brant Gibson & Prof Ewa Goldys for all-round awesome!

CNBP conference veteran talks about his links to the Centre

Professor Dennis Matthews is one of CNBP’s oldest friends, having been coming to Australia from his home in California each year for nearly seven years as a member of its International Science Committee.

“I’ve actually been coming here since before the CNBP inception. They were just getting their act together for the initial grant when I first visited,” he says.

Professor Matthews was trained as physicist, but for most of his working life he has been involved in the development of medical devices.

His multidisciplinary life is reflected in his position as professor at University of California Davis in both the Department of Neurological Surgery and the College of Engineering. He was at one time also director of UC Davis’ Center for Biophotonics, Science, and Technology.

“I was hired into the neurological department not because I knew anything about neurosurgery but because they wanted their physicians to have more opportunity to do early stage research, even before it could be translated to the clinic,” he says.

He “abandoned physics 30 or 40 years ago”, drawn to things that were more hands-on and, around that time, he met a medical doctor who wanted to develop better instrumentation.
“I told him I didn’t know anything about medicine so he should go away. But he didn’t.”

That started a long history of working with doctors and bioscientists to develop technology that helped in their work.

“Biological scientists are incredibly smart at what they do but they are not so smart at measuring it,” he says.

“I don’t know what their problems are, of course, so they tell me what they are trying to achieve and I tell them ways to get at the solutions to their problems – and we help each other along the way.

“What I like about it, and CNBP works very nicely in this respect, is that you ‘bootstrap’ it. I tell the bioscientists I can do something but I’m not quite sure I know how to do it. So they challenge me to make technology progress at the same time.”

He believes CNBP has some unique strengths – “I wouldn’t travel around 13,000km to come here otherwise”.

Dennis Matthews presenting at CNBP’s 2019 conference

He was first introduced to the centre by the inaugural director, Professor Tanya Munro. “I thought she had an extremely good vision of where all this could go and perhaps an even better way of communicating that vision.” Since then, he says, current director Professor Mark Hutchinson has emerged as an incredible thought leader as well.

Professor Matthews says he likes the way the CNBP brings themes together and its “Mission Impossible” approach to throwing multidisciplinary teams of experts at problems.

As a technologist he was also drawn to the IPAS fibre optics group, and the way it was developing fibre sensors to interrogate places that might otherwise be invisible.
Two biological research themes particularly interested him.

“Many of the things here are important to me but there were two that were exceptional and that was Mark’s [Hutchinson] work on neuroscience applied to pain, and particularly his interest in developing a “painometer”.

He was also attracted to the IVF research under Chief Investigator Professor Jeremy Thompson.

“My daughter had two children by IVF and so my interests were already a bit piqued. But I was also interested to see if we could make the whole thing work better.”

Secondly was the possibility of making sure the highest quality embryos were developed and then implanted.

“That whole notion was extremely fascinating and provocative to me,” he says. “I think that we are going to learn how to make embryos healthier in normal conception. And if we can make the healthiest baby possible it can lead to a lifetime of good health.”

Personal experience also lay at the heart of his interest in Professor Hutchinson’s work on pain, which, while important to help people cope at a personal level, he sees as a potential solution to the opiate crisis.

“At the moment we are only delivering pain-masking drugs,” he says. “These powerful drugs don’t do anything except make people not care if they hurt – they still hurt.”

He is helping with the task of looking for biomarkers that might underpin such a measuring device.

“I think it’s possible, but I don’t know yet what the right measurements are,” Professor Matthews says. “And the problem with humans is there is no single recipe, so if we do get a panel of biomarkers that said my pain level was 6 it could be completely wrong for you.

“So we need some way to normalise it so we can say this is a baseline for an individual.”
Professor Matthews is particularly drawn to the CNBP’s focus on envisioning the ultimate translation of the technology.

“So instead of just filling the journals with more manuscripts it is also important in biosciences that you keep in mind that your work will, in the end, actually affect patients.

“The question we should always be asking is ‘how do we get doctors to have the latest technologies to work with?’.”

Cell surface sensors could advance precision medicine

1 October 2019:

Researchers have found a way to identify multiple cell signalling proteins using a single cell rather than the billions of cells used previously.

The new measurement technology, developed by researchers at the ARC Centre of Excellence for Nanoscale Biophotonics, brings precision medicine a step closer.

“Cells secrete various messenger molecules, such as cytokines. They may indicate the presence of a disease or act as a driver of key therapeutic effects,” says Dr Guozhen Liu, lead author of paper detailing the technology.

The method, termed OnCELISA, uses antibodies attached on specially engineered cell surfaces to capture cytokine molecules before they have a chance to disperse away from the cell.

The secreted messenger proteins such as cytokines are reported, at the single cell level, by using fluorescent magnetic nanoparticles.

Cytokines secreted from cells play a critical role in controlling many physiological functions, including immunity, inflammation, response to cancer, and tissue repair.

 

The image represents our sensor during the process of detecting cytokine molecules being secreted from cells. The sensor is represented by a pair of Y-shaped antibodies, the capture antibody (purple stem) and the detection antibody (pink stem).

The OnCELISA system can be used for ultrasensitive monitoring of cytokine release by individual cells, and it can also help discover cell populations with therapeutic value.

“The ability to identify and select cell populations based on their cytokine release is particularly valuable in commercial cell technologies and it can help develop unique products, such as future non-opioid pain relief” says Dr Liu.

“Importantly, our design uses commercially available reagents only, so it can be easily reproduced by others,” she adds.

While the published work focuses on specific proinflammatory cytokines IL-6 and IL-1β, the method is potentially suitable for a broad range of other secreted proteins and cell types.

The new technique represents an advance on traditional methods such as the enzyme-linked immunosorbent assays (ELISA) that detect average levels of secreted molecules from cell ensembles.

The OnCELISA takes the ELISA approach to its absolute extreme, by detecting cytokines on the surface of individual, single live cells.

The publication has been reported by prestigious iScience journal and can be found at https://www.sciencedirect.com/science/article/pii/S2589004219303578.

Journal: iScience

Publication Title: A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting Cells

Authors: Guozhen Liu; Christina Bursill; Siân P.Cartland; Ayad G.Anwer; Lindsay M.Parker; Kaixin Zhang; Shilun Feng; Meng He; David W.Inglis; Mary M.Kavurma; Mark R.Hutchinson; Ewa M.Goldys

Summary: We developed a universal method termed OnCELISA to detect cytokine secretion from individual cells by applying a capture technology on the cell membrane. OnCELISA uses fluorescent magnetic nanoparticles as assay reporters that enable detection on a single-cell level in microscopy and flow cytometry and fluorimetry in cell ensembles. This system is flexible and can be modified to detect different cytokines from a broad range of cytokine-secreting cells. Using OnCELISA we have been able to select and sort highly cytokine-secreting cells and identify cytokine-secreting expression profiles of different cell populations in vitro and ex vivo. We show that this system can be used for ultrasensitive monitoring of cytokines in the complex biological environment of atherosclerosis that contains multiple cell types. The ability to identify and select cell populations based on their cytokine expression characteristics is valuable in a host of applications that require the monitoring of disease progression.

Link: https://doi.org/10.1016/j.isci.2019.09.019

Science by the Sea 2019

23 September 2019:

By Patrick Capon and Kathryn Palasis

The current academic landscape demands ‘Publish or Perish’, but how do you make sure your publication stands out from the rest? Luckily for us, CNBP has identified this issue and developed a residential masterclass with a dual purpose of giving young researchers the opportunity to workshop a range of different manuscripts while growing team culture. Continue reading